HEUTS EXERCISES

TIM CAMPION

Let $F : \mathcal{C}_{\leftarrow} \mathcal{C}_n : G$ be an adjunction between pointed, compactly-generated ∞ categories. Recall that this adjunction is a *weak n-excisive approximation* (of \mathcal{C} by \mathcal{C}_n) if the following conditions are satisfied:

- (1) $\operatorname{id}_{\mathcal{C}_n} : \mathcal{C}_n \to \mathcal{C}_n$ is *n*-excisive.
- (2) $P_n(\mathrm{id}_{\mathcal{C}}) \to GF$ is an equivalence.
- (3) $P_n(FG) \to \mathrm{id}_{\mathcal{C}_n}$ is an equivalence.

Exercise 1. Let $F_{\mathcal{C}} : \mathcal{C}_{\leftarrow}^{\rightarrow} \mathcal{C}_n : G_{\mathcal{C}}, F_{\mathcal{D}} : \mathcal{D}_{\leftarrow}^{\rightarrow} \mathcal{D}_n : G_{\mathcal{D}}$ be weak *n*-excisive approximations. Show that there is an equivalence

$$\operatorname{Fun}^{\leq n}(\mathcal{C}, \mathcal{D})_{\leftarrow}^{\rightarrow} \operatorname{Fun}^{\leq n}(\mathcal{C}_n, \mathcal{D}_n)$$
$$H \mapsto F_{\mathcal{D}} H G_{\mathcal{C}}$$
$$G_{\mathcal{D}} K F_{\mathcal{C}} \leftrightarrow K$$

Here Fun^{$\leq n$} denotes the category of functors which are n-excisive and commute with filtered colimits.

Hint: Use the fact that $P_n(\Phi \Psi) = P_n(P_n(\Phi)\Psi) = P_n(\Phi P_n(\Psi)).$

Recall that a pointed, compactly-generated ∞ -category \mathcal{C} is *n*-excisive if every weak *n*-excisive approximation of \mathcal{C} is an equivalence. A weak *n*-excisive approximation of \mathcal{C} by \mathcal{C}_n is a strong *n*-excisive approximation if \mathcal{C}_n is *n*-excisive.

- **Exercise 2.** (1) Let C be a pointed compactly-generated ∞ -category. Show that the weak n-excisive approximations of C form a (possibly large) preorder, and that a strong n-excisive approximation of C is a maximal element of this preorder.
 - (2) Let n < 0 be an integer. Show that the category of n-connective spectra is a weak 1-excisive approximation to Top_* , but not a strong 1-excisive approximation. Show that the category of spectra is a strong 1-excisive approximation to Top_* .

In my talk, I said some things about the functoriality of \mathbb{P}_n , not all of which were correct.

Exercise 3. Let \mathcal{C}, \mathcal{D} be pointed, compactly-generated ∞ -categories.

(1) If $F : \mathcal{C} \to \mathcal{D}$ is a functor preserving filtered colimits, define $\mathbb{P}_n F = \sum_n^{\infty} P_n F \Omega_n^{\infty}$. Show that $\mathbb{P}_n F = P_n(\operatorname{Lan}_{\Sigma_n^{\infty}} \Sigma_n^{\infty} F)$. In my talk, I claimed that $\mathbb{P}_n F = \operatorname{Lan}_{\Sigma_n^{\infty} F} \Sigma_n^{\infty} F$. What's wrong with this claim?

Date: April 2019.

TIM CAMPION

(2) Note that \mathbb{T}_n , and hence \mathbb{P}_n , is functorial in left adjoint functors. Show that when F is a left adjoint, the resulting definition of $\mathbb{P}_n F$ agrees with the definition of the first part.