THH IS THE FIRST DERIVATIVE OF K-THEORY

HARI RAU-MURTHY

1. K-THEORY

Today we'll be talking about the directional derivative of K-theory. We begin with a few definitions.

Recall that topological K-theory is concerned with complex vector bundles, i.e. families of \mathbb{C}^n parametrized by a space X. A rank n complex vector bundle $V \to X$ is classified by a map $X \to BU(n)$, where BU(n) may be thought of as a delooping of the category of vector spaces of dimension n. In other words, families of vector spaces parametrized by X are classified by maps

$$X \to \sqcup_n BU(n).$$

The K-theory of \mathbb{C} , $K(\mathbb{C})$, is designed to classify virtual vector bundles over X. It arises as the group completion of $\sqcup_n BU(n)$. This group completion may be identified with $\Omega B(\sqcup_n BU(n))$. A calculation shows that $\Omega B(\sqcup_n BU(n))$ is equivalent to $\mathbb{Z} \times BU$.

More generally, the K-theory K(R) of a ring R classifies "virtual R-bundles over a space X". More precisely, we have

$$K(R) \simeq \Omega BProj(R) \simeq K_0(R) \times BGL_{\infty}(R)^+$$

where Proj(R) is the category of finite rank projective *R*-modules and $(-)^+$ is Quillen's plus construction.

We now ask what ΩBC is, where $C = (Proj(R), \oplus)$ or $C = (Vect(\mathbb{C}), \oplus)$, or more generally C is a symmetric monoidal groupoid. First, the category BC has a single object * and 1-morphisms $\oplus M$, $M \in ob(C)$, and 2-morphisms Mor(C). So, we are really interested in $\Omega |BC|$.

Now, let's review the categorical nerve NBC. The *n*-th level N_nBC consists of sequences of *n* objects $M_1, \ldots, M_n \in ob(C)$. The face and degeneracy maps are the same as those for a group or monoid.

Definition 1.1. Given a symmetric monoidal category C, we define $S_{\bullet}C$ to be the simplicial symmetric monoidal category where S_nC consists of sequences of n objects $M_1, \ldots, M_n \in C$ in the form

$$M_1 \to M_1 \otimes M_2 \to M_1 \otimes M_2 \otimes M_3 \to \cdots \to M_1 \otimes \cdots \otimes M_n$$

Face and degeneracy maps are as above.

Remark 1.2. There is an equivalence of simplicial categories $N_{\bullet}B\mathcal{C} \simeq S_{\bullet}\mathcal{C}$.

HARI RAU-MURTHY

Example 1.3. Let M be a monoid. Then there is a map $M \to \Omega BM$. More generally, if \mathcal{C} is a topological category, then there is a map of spaces $Mor(\mathcal{C}) \to P|\mathcal{C}|$ where P is the path space functor.

There is a map from the 1-skeleton of $S_{\bullet}C$ to all of $S_{\bullet}C$. But note that the 1-skeleton is just $(\Delta^1 \times S_1C)/(d_0, d_1)$, which is equivalent to $S^1 \times S_1C$. By adjunction, we then have a map

$$|\mathcal{C}| = S_1 \mathcal{C} \to \Omega S_{\bullet} \mathcal{C}.$$

This map is a group completion.

Definition 1.4. We define the algebraic K-theory $K(\mathcal{C})$ of a symmetric monoidal category \mathcal{C} is defined by

$$K(\mathcal{C}) := \Omega |S_{\bullet}\mathcal{C}|.$$

2. STABLE K-THEORY AND THH

Since functor calculus is interested in functors from spaces, we need to understand K-theory as a functor from spaces.

Let A be an abelian group. Let S^n_{\bullet} denote the simplicial set model for the *n*-sphere S^n . Let $A[S^n_{\bullet}]$ be a simplicial abelian group with $|A[S^n_{\bullet}]| \simeq K(A, n)$ (compare with Dold-Kan).

Definition 2.1. Let A be a ring and let V be a simplicial module. Let $A \rtimes V$ be the ring with $(a, v) \cdot (b, w) = (ab, aw + bv)$. We then define

$$K(A, V) := |K(A \rtimes V)|.$$

We define *stable K-theory*

 $K^{s}(A, V)$

to be the "derivative of K at A in the direction M". More precisely, we have

$$K^{s}(A, M) := fib(\operatorname{colim}_{n} \Omega^{n+1} K(A \rtimes M[S^{n}_{\bullet}]) \to K(A))$$

Definition 2.2. We define THH(A) to be the geometric realization of the cyclic bar construction $B^{cyc}_{\bullet}(A)$.

One also has

$$THH(A) \simeq |N_{\bullet}^{cyc}Proj(A)|.$$

This motivates the definition:

Definition 2.3. We define $THH(\mathcal{C}) = |N_{\bullet}^{cyc}\mathcal{C}|$.

One also has

$$THH(Proj(A)) \simeq \Omega THH(S_{\bullet}Proj(A))$$

One can define the *Dennis trace*

$$K(\mathcal{C}) \to THH(\mathcal{C})$$

using these equivalences and the map

$$\Omega|S_{\bullet}\mathcal{C}| \to \Omega|THHS_{\bullet}\mathcal{C}|.$$

One can then show that the directional derivatives of both sides coincide.

 $\mathbf{2}$