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1. K-theory

Today we’ll be talking about the directional derivative of K-theory. We begin with
a few definitions.

Recall that topological K-theory is concerned with complex vector bundles, i.e.
families of Cn parametrized by a space X. A rank n complex vector bundle V → X
is classified by a map X → BU(n), where BU(n) may be thought of as a delooping
of the category of vector spaces of dimension n. In other words, families of vector
spaces parametrized by X are classified by maps

X → tnBU(n).

The K-theory of C, K(C), is designed to classify virtual vector bundles over X. It
arises as the group completion of tnBU(n). This group completion may be identified
with ΩB(tnBU(n)). A calculation shows that ΩB(tnBU(n)) is equivalent to Z×BU .

More generally, the K-theory K(R) of a ring R classifies “virtual R-bundles over a
space X”. More precisely, we have

K(R) ' ΩBProj(R) ' K0(R)×BGL∞(R)+

where Proj(R) is the category of finite rank projective R-modules and (−)+ is
Quillen’s plus construction.

We now ask what ΩBC is, where C = (Proj(R),⊕) or C = (V ect(C),⊕), or more
generally C is a symmetric monoidal groupoid. First, the category BC has a single
object ∗ and 1-morphisms ⊕M , M ∈ ob(C), and 2-morphisms Mor(C). So, we are
really interested in Ω|BC|.

Now, let’s review the categorical nerve NBC. The n-th level NnBC consists of
sequences of n objects M1, . . . ,Mn ∈ ob(C). The face and degeneracy maps are the
same as those for a group or monoid.

Definition 1.1. Given a symmetric monoidal category C, we define S•C to be the
simplicial symmetric monoidal category where SnC consists of sequences of n objects
M1, . . . ,Mn ∈ C in the form

M1 →M1 ⊗M2 →M1 ⊗M2 ⊗M3 → · · · →M1 ⊗ · · · ⊗Mn.

Face and degeneracy maps are as above.

Remark 1.2. There is an equivalence of simplicial categories N•BC ' S•C.
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Example 1.3. Let M be a monoid. Then there is a map M → ΩBM . More generally,
if C is a topological category, then there is a map of spaces Mor(C)→ P |C| where P
is the path space functor.

There is a map from the 1-skeleton of S•C to all of S•C. But note that the 1-skeleton
is just (∆1 × S1C)/(d0, d1), which is equivalent to S1 × S1C. By adjunction, we then
have a map

|C| = S1C → ΩS•C.
This map is a group completion.

Definition 1.4. We define the algebraic K-theory K(C) of a symmetric monoidal
category C is defined by

K(C) := Ω|S•C|.

2. Stable K-theory and THH

Since functor calculus is interested in functors from spaces, we need to understand
K-theory as a functor from spaces.

Let A be an abelian group. Let Sn
• denote the simplicial set model for the n-sphere

Sn. Let A[Sn
• ] be a simplicial abelian group with |A[Sn

• ]| ' K(A, n) (compare with
Dold-Kan).

Definition 2.1. Let A be a ring and let V be a simplicial module. Let AoV be the
ring with (a, v) · (b, w) = (ab, aw + bv). We then define

K(A, V ) := |K(Ao V )|.
We define stable K-theory

Ks(A, V )

to be the “derivative of K at A in the direction M”. More precisely, we have

Ks(A,M) := fib(colimn Ωn+1K(AoM [Sn
• ])→ K(A)).

Definition 2.2. We define THH(A) to be the geometric realization of the cyclic bar
construction Bcyc

• (A).

One also has
THH(A) ' |N cyc

• Proj(A)|.
This motivates the definition:

Definition 2.3. We define THH(C) = |N cyc
• C|.

One also has
THH(Proj(A)) ' ΩTHH(S•Proj(A)).

One can define the Dennis trace

K(C)→ THH(C)
using these equivalences and the map

Ω|S•C| → Ω|THHS•C|.
One can then show that the directional derivatives of both sides coincide.


