
MINICOURSE PART II

JENS JAKOB KJAER

1. Higher analogs of linear functors

Last week we talked about linear functors. Our goal today is to generalize to
higher cubes. Unfortunately, today will mostly be definitions, but hopefully they’ll
make sense given what we did last week.

Definition 1.1. An n-cube is a functor

C : P (n)→ C

where n = {1, . . . , n}. Such a functor is cartesian if the map

C(∅)→ limP (n)\{∅}C

is an equivalence.

Example 1.2. If a 2-cube is cartesian, then it is a pullback square.

Definition 1.3. A n-cube is cocartesian if

colimP (n)−nC → C(n)

is an equivalence. It is strongly cocartesian if it is cocartesian on each face of dimension
at least two.

Example 1.4. (a picture of a 3-cube)

Definition 1.5. A functor F : C → D is n-excisive if it takes strongly cocartesian
(n+ 1)-cubes to cartesian cubes.

Exercise 1.6. The functor Ω∞(C ∧ (−)∧n)) (from spaces to spaces) is n-excisive for
any spectrum C.

Last week we defined linear approximations. The key idea was that if we linearized
with respect to the diagram

X CX

CX ΣX,

then we linearized with respect to everything. Our goal now is to define the higher-
dimensional analog of this diagram
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Definition 1.7. Let X, Y ∈ Top∗. The join of X and Y is

X ∗ Y = (X × Y × I)/ ∼
where (x0, y, 0) ∼ (x1, y, 0) and (x, y0, 1) ∼ (x, y1, 1).

Example 1.8. We have:

(1) X ∗ ∅ ' X,
(2) X ∗ {pt} ' CX,
(3) X ∗ {pt} t {pt} ' ΣX,
(4) X ∗ {pt} t {pt} t {pt} ' (ΣX with an extra pointy bit).

Now let X be a space. We define

Cn
X : P (n)→ Top,

u 7→ X ∗ U.
Note that when n = 2, we recover precisely the preferred diagram from above.

Remark 1.9. The join commutes with pushouts, so the functor above is strongly
cocartesian.

Let’s use this generalization to define higher analogs of the T -functors from the
linear case. Given a homotopy functor F , we want to consider

F (X) ' F (X ∗ ∅)→ limP (n+1)−∅ F ◦ Cn+1
X .

We define
TnF := limP (n+1)−∅ F (Cn+1

X )

to be the left-hand side.

Remark 1.10. If F is n-excisive, then this map is an equivalence. This follows from
tracing through the definitions, along with the remark above that Cn+1

X is strongly
cocartesian.

Definition 1.11. A functor F satisfies En(c, κ) if for any strongly cocartesian cube
C(n+ 1)→ Top∗ with C(∅)→ C({i}) is ki-connected with ki ≥ κ, then

F (C(∅))→ limP (n+1)−∅ F ◦ C
is (

∑
i ki − c)-connected.

We say that F is stably n-excisive if it is En(c, κ).

Remark 1.12. F is n-excisive if and only if F is En(−∞,−∞).

Definition 1.13. We say that F → G is On(c, κ) if for any k-connected X with
k ≥ κ, then F (X)→ G(X) is ((n+ 1)k − c)-connected.

If F and G satisfy On(c, κ), then we say that they agree up to n-th order.

Proposition 1.14. If F is stably excisive, say F is En(c, κ), then:

(1) Tn(F ) is En(c− 1, κ− 1).
(2) F → Tn(F ) is O(c, κ).
(3) PnF := colim(F → Tn(F )→ Tn(Tn(F ))→ · · · ) is n-excisive.
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(4) F → PnF agrees up to n-th order.

The proof of this proposition is very similar to the proof of the linear analog from
the problem session. The key point is that Ω commutes with homotopy limits.

Proposition 1.15. The functor Pn commutes with finite homotopy limits and filtered
homotopy colimits.

This follows from running through the definitions and seeing when homotopy limits
and colimits commutes.

Theorem 1.16. In the homotopy category of functors, the map F → PnF is initial
amongst maps to n-excisive functors.

The proof is, again, similar to the linear case which was proven last week.

2. The Taylor tower

Lemma 2.1. If F is n-excisive, then it is also (n+ 1)-excisive.

Hint of proof. Think of a strongly cocartesian (n+2)-cube as being built out of several
strongly cocartesian (n+ 1)-cubes, then apply F and figure out what commutes. �

Corollary 2.2. We have a tower

...

P2F

P1F

F P0F.

Note that P0F ' F (pt). This is called the Taylor tower.

Theorem 2.3. If F is En(nρ− q, ρ+ 1) for some fixed ρ and q and for all n, we call
F ρ-analytic. If X is k-connected with k > ρ, then

F (X)→ limPn(F )(X)

is an equivalence. Moreover, the spectral sequence associated to the Taylor tower
converges strongly.

The statement about strong convergence comes from the connectivity assumptions
above. In other words, everything was set up to give this nice property!

Definition 2.4. Let
Dn(F ) := hofib(PnF → Pn−1F ).

A functor F is n-homogeneous if it is n-excisive and if Pn−1F ' ∗.
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Lemma 2.5. DnF is n-homogeneous and D1F is linear.

Proof. This follows from the equivalence Pn−1(PnF ) ' Pn−1F . �

We saw last week that all linear functors were classified by spectra. Our goal now
is to get the analogous result for n-homogeneous functors.

Remark 2.6. For any functor F , we can construct BDnF such that

PnF → Pn−1F → BDnF

is a fiber sequence. This implies that

DnF ' ΩBDnF.

In fact, there is a general method for delooping n-homogeneous functors, but we
will not cover this today.

Theorem 2.7. Let Hn(C,D) be the category of n-homogeneous functors. Then

Hn(Top∗, Sp)
Ω∞
→ Hn(Top∗, T op∗)

is an equivalence.

In other words, every n-homogeneous functor is an infinite loop space.

Lemma 2.8. Suppose that Cn F→ D is linear in each variable, and suppose also that
F is symmetric, i.e. for each σ ∈ Σn, there is an equivalence σ∗ : F (X1, . . . , Xn) →
F (Xσ(1), . . . , Xσ(n)). Then we can define

∆nF (X) := F (X, . . . , X)hΣn

and this is n-homogeneous.

Let Ln(C,D) be the category of functors which are linear in each variable and
symmetric (as above). We have

Ln(C,D)
∆n→ Hn(C,D).

We want to define the cross effect as the inverse of this.

Remark 2.9. We now recall the classical notion of cross effect. Suppose that f :
R→ R. Then the second cross effect of f is

cr2(f)(x1, x2) = f(x1 + x2)− f(x1)− f(x2) + f(0).

Suppose that f(0) = 0 to simpify. Then cr2(f) vanishes precisely when f is linear.
More generally, the n-th cross effect is used to check if f is a polynomial of degree

n.

We want to construct a functor crn which


