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1. Cross-effects

Last time, we discussed a map

Ln(C,D)
∆n→ Hn(C,D)

where the left-hand side is the category of functors F : Cn → D which are symmetric
and linear in each variable, and the right-hand side is the category of n-homogeneous
functors. we think of the left-hand side as multilinear functors, whereas the right-hand
side are homogeneous functors. Recall that

∆nF (X) = F (X, . . . , X)hΣn .

Recall from last time that we defined the cross-effect in calculus by

cr2(f)(x1, x2) = f(x1 + x2)− f(x1)− f(x2) + f(0).

In this setting, we should replace the symbol + by ∨ and replace − by fib(−).

Definition 1.1. Let Xi ∈ C. Define an n-cube

Cn(X1, . . . , Xn) : P (n)→ C
by

U 7→
∨

i∈n−U

Xi.

Example 1.2. We have
C1(X) : X 7→ ∗

and C2(X1, X2) is given by

X1 ∨X2 X2

X1 ∗.

Definition 1.3. Let F : C → D. Then crn(F ) : Cn → D is defined by

crn(F )(X1, . . . , Xn) := tfib(F ◦ Cn(X1, . . . , Xn))

where tfib is the total fiber.

Example 1.4. We have

cr1(F )(X) = fib(F (X)− F (pt)).
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Example 1.5. We want to understand cr2(F )(X). Let

F2 = fib(F (X1 ∨X2)→ F (X1)),

F1 = fib(F (X2)→ F (pt)).

Then

cr2(F )(X) = fib(F2 → F1).

We are almost ready to define the inverse to ∆n. First, we need the following
observation:

Remark 1.6. The functor crn(F ) is a symmetric functor from Cn → D.

In particular, we have

crn : Fun(C,D)→ FunΣn(Cn,D).

Proposition 1.7. If F is n-excisive, then crm(F ) is (n − m + 1)-excisive in each
variable.

In particular, this implies that we have a functor

crn : Hn(C,D)→ Ln(C,D).

Theorem 1.8. This gives an equivalence of categories.

2. Derivatives

Recall from the first lecture that

L1(C,D) ' Sp

where C and D were spaces or spectra. This equivalence was defined by

F 7→ {F (Sn)},

with the structure maps F (X)→ ΩF (ΣX) equivalences by linearity. The inverse was
defined by

C 7→ Ω∞C ∧ −.

Remark 2.1. Under some mild hypotheses on C and D, the above equivalence still
holds if we replace Sp by the stabilization of D.

Our goal now is to mimic this for multilinear functors.

Fact 2.2. If F ∈ Ln(C,D), then the map

F (X1, . . . , Xn)→ ΩnF (ΣX, . . . ,ΣX)

is an equivalence. We may rewrite the right-hand side as Ω1+···+1F (ΣX, . . . ,ΣX)
more suggestively, and it turns out that this map is a Borel equivalence.
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This fact implies that we have a functor

Ln(C,D)→ SphΣn

defined by

F 7→ {F (Sk, . . . , Sk)}.
The structure maps

F (Sk, . . . , Sk)→ Ω1+···+1F (Sk+1, . . . , Sk+1)

are Borel equivalences, and in fact we can identify Ω1+···+1 with Ωρ where ρ is the
regular representation of Σn. Above, SphΣn is the category of Borel Σn-spectra.

We can define an inverse

SphΣn → Ln(Top∗, T op∗)

by sending

C 7→
(
(x1, . . . , xn) 7→ Ω∞Σn

C ∧X1 ∧ · · · ∧Xn

)
.

This turns out to define an equivalence of categories.

Corollary 2.3. We have

∂n : Hn(C,D)
'→ SphΣn

with inverse

C 7→ (X 7→ Ω∞(C ∧X∧n)hΣn).

Recall that DnF (X) = hofib(PnF (X)→ Pn−1F (X)). Then

DnF (X) ' Ω∞(∂nF ∧X∧n)hΣn

for some ∂nF ∈ SphΣn .

Corollary 2.4. If F is ρ-analytical and X is k-connected for k > ρ, then there is a
strongly convergent spectral sequence (see first lecture) of the form∏

n

π∗DnF (X) ∼=
∏
n

πs∗((∂nF ∧X∧n)hΣn)⇒ π∗F (X).

Why is this cool? The left-hand side is an object in stable homotopy theory! We
then have tools like the Serre spectral sequence and the homotopy orbit spectral
sequence to analyze this! Of course, this means that the derivatives in the Goodwillie
spectral sequence must be hard, since they have to encode unstable information.

3. Computations, examples, and an overview of recent research

For now, assume that all functors are reduced.

Theorem 3.1. There is an equivalence

crnPnF ' crnDnF.

Fact 3.2. We have

FunΣn(Cn,D)
P1,...,1−→ Ln(C,D).
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In particular, we have a commutative diagram (up to homotopy

Fun(C,D) Fun(Cn,D) Ln(C,D)

Hn(C,D) SpΣn .

crn

DnF

P1,...,1

'

∂n,'

Example 3.3. Let’s compute ∂2(id). First, we have

cr2(id)(X1, X2) ' fib(X1 ∨X2 → X1 ×X2).

If we took the cofiber instead, then we’d have X1 ∧X2.
Now we need to stabilize. In a stable category (e.g. spectra), cofiber sequences are

fiber sequences. Therefore we can show that

P1,1cr2(id)(X1, X2) ' Ω∞(Ω(Σ∞X1 ∧ Σ∞X2)).

Since Ω(−) ' S−1 ∧ −, we have

∂2(id) ' S−1.

We can then go further:

D2(id)(X) ' Ω∞(S−1 ∧X∧2
hΣ2

).

For now, let’s omit id from the notation. Then we have a fiber sequence

D2(X)→ P2(X)→ P1(X)→ BD2(X)

where we have used the fact that D2(X) is an infinite loop space in order to deloop.
We can then identify the last map above with the James-Hopf map

Ω∞Σ∞X → Ω∞(Σ∞X∧2
hΣ2

).

This implies that π∗P2(X) is the metastable homotopy groups of X, which were studied
by Whitehead, Toda, Mahowald, etc...

The higher levels of the tower don’t have names, but we can still ask about them.

Theorem 3.4 (Johnson). There is an equivalence (not Σn-equivariant)

∂n(id) '
∨

(n−1)!

S1−n.

Theorem 3.5 (Arone-Mahowald). (1) If m is odd, then

∂n ∧hΣn (Sm)∧n ' ∗
if n 6= pd for any prime p.

(2) We have

∂pd ∧hΣ
pd

(Sm)∧p
d

are p-local.
(3) The mod p cohomology H∗(∂pd ∧hΣ

pd
(Sm)p

d
;Fp) is “computable and nice.”
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Remark 3.6. A monograph of Behrens recovers Toda’s unstable computations using
the Goodwillie spectral sequence and the previous theorem.

Theorem 3.7 (Arone-Ching). The derivatives of the identity functor ∂∗ has the
structure of an operad, i.e. maps

∂n ∧ ∂k1 ∧ · · · ∧ ∂kn → ∂k1+···+kn .

This is fairly natural with respect to the theory we’ve discussed. We have

Fun(Top∗, T op∗)
∂∗(−)−→ ∂∗ −Bimod

which sends F to the bimodule with structure maps

∂n ∧ ∂k1(F ) ∧ · · · ∧ ∂kn(F ) 7→ ∂k1+···+kn(F ).

Arone-Ching apply this additional structure to some known functors to obtain “quicker”
proofs.

Fact 3.8. The homology H∗(∂∗;Q) is an operad in grV ectQ. Saying that V is an
H∗(∂∗;Q)-algebra is equivalent to saying that Σ−1V is a Lie algebra.

This tells us what ∂3 looks like:

∂3(id) =
∨
L

S−2

where L is all the ways one can bracket three elements in a Lie algebra. Concretely,
we have

L = {[x1, [x2, x3]], [x2, [x1, x3]], [x3, [x1, x2]]}/(Jacobi identity).

More basically, we have

∂2(id) =
∨

{[x1,x2],[x2,x1]}/comm

S−1.

Therefore if we want to compute π∗(X), we have

πs∗PsLie(X)⇒ π∗(X)

where PsLie is the free shifted Lie algebra in spectra. This looks “even more algebraic”
than what we had before. This plays well with chromatic homotopy theory (e.g.
computing the vn-periodic unstable homotopy of X), which has been the subject of
lots of recent work.


