Problems

Jens Jakob Kjaer

February 6, 2019

- 1. Compute ∂_3 from the definition.
- 2. Show that P_n commutes with finite limits, and filtered colimits
- 3. Show that $P_n(F \circ \Sigma) \simeq P_n(F) \circ \Sigma$ and $P_n(\Omega \circ F) \simeq \Omega P_n(F)$. Find $\partial_*(\Omega)$, and $\partial_*(\Sigma)$.
- 4. Show that $P_n(F \circ \operatorname{Sq}) = P_{\lfloor \frac{n}{2} \rfloor}(F) \circ \operatorname{Sq}$, where $\operatorname{Sq}(X) = X \wedge X$. Find $\partial_*(\operatorname{Sq})$.

In the following functors are between spaces and reduced. The following are some of the key observations in Sarah Yeakel's proof of the chain rule.

e. Let $\bigvee_n : \mathcal{C}^n \to \mathcal{C}$ be $(X_1, \ldots, X_n) \mapsto \bigvee_i^n X_i$. Show that

$$\operatorname{cr}_{2}(F)(X_{1}, X_{2}) = \operatorname{cr}_{1}^{(2)} \left(\operatorname{cr}_{1}^{(1)} \left(F \circ \bigvee_{2} \right) \right) (X_{1}, X_{2}),$$

where $\operatorname{cr}_{1}^{(i)}$ is apply the first cross effect to the *i*'th coordinate.

f. Show that there is a map $F \circ \operatorname{cr}_1(G) \to \operatorname{cr}_1(F \circ G)$

From here one construct maps

$$\operatorname{cr}_{k}(F)(\operatorname{cr}_{n_{1}}(G),\ldots,\operatorname{cr}_{n_{k}}(G)) \to \operatorname{cr}_{n_{1}+\ldots+n_{k}}(F \circ G)$$

These induces maps $\partial_k(F) \wedge \partial_{n_1}(G) \wedge \ldots \wedge \partial_{n_k}(G) \to \partial_{n_1+\ldots+n_k}(F \circ G)$.

VII. Show that for $\Delta_2 : \mathcal{L}_2 \leftrightarrows \mathcal{H}_2 : \operatorname{cr}_2$ then $\operatorname{cr}_2 \circ \Delta_2 \simeq id$.