Problems

Jens Jakob Kjaer

February 6, 2019

1. Compute ∂_{3} from the definition.
2. Show that P_{n} commutes with finite limits, and filtered colimits
3. Show that $P_{n}(F \circ \Sigma) \simeq P_{n}(F) \circ \Sigma$ and $P_{n}(\Omega \circ F) \simeq \Omega P_{n}(F)$. Find $\partial_{*}(\Omega)$, and $\partial_{*}(\Sigma)$.
4. Show that $P_{n}(F \circ \mathrm{Sq})=P_{\left\lfloor\frac{n}{2}\right\rfloor}(F) \circ \mathrm{Sq}$, where $\mathrm{Sq}(X)=X \wedge X$. Find $\partial_{*}(\mathrm{Sq})$.

In the following functors are between spaces and reduced. The following are some of the key observations in Sarah Yeakel's proof of the chain rule.
e. Let $\bigvee_{n}: \mathcal{C}^{n} \rightarrow \mathcal{C}$ be $\left(X_{1}, \ldots, X_{n}\right) \mapsto \bigvee_{i}^{n} X_{i}$. Show that

$$
\operatorname{cr}_{2}(F)\left(X_{1}, X_{2}\right)=\operatorname{cr}_{1}^{(2)}\left(\operatorname{cr}_{1}^{(1)}\left(F \circ \bigvee_{2}\right)\right)\left(X_{1}, X_{2}\right),
$$

where $\mathrm{cr}_{1}^{(i)}$ is apply the first cross effect to the i 'th coordinate.
f. Show that there is a map $F \circ \operatorname{cr}_{1}(G) \rightarrow \operatorname{cr}_{1}(F \circ G)$

From here one construct maps

$$
\operatorname{cr}_{\mathrm{k}}(F)\left(\operatorname{cr}_{n_{1}}(G), \ldots, \operatorname{cr}_{n_{k}}(G)\right) \rightarrow \operatorname{cr}_{n_{1}+\ldots+n_{k}}(F \circ G)
$$

These induces maps $\partial_{k}(F) \wedge \partial_{n_{1}}(G) \wedge \ldots \wedge \partial_{n_{k}}(G) \rightarrow \partial_{n_{1}+\ldots+n_{k}}(F \circ G)$.
VII. Show that for $\Delta_{2}: \mathcal{L}_{2} \leftrightarrows \mathcal{H}_{2}: \mathrm{cr}_{2}$ then $\mathrm{cr}_{2} \circ \Delta_{2} \simeq i d$.

