INTRODUCTION TO MANIFOLD CALCULUS

BRIDGET SCHREINER

1. Introduction

Manifold calculus follows the same philosophy as homotopy calculus; however, neither is a special case of the other. Today's techniques will follow 1996 work of Weiss and Goodwillie.

Recall that for homotopy calculus, we worked with functors $F: \mathcal{C} \rightarrow \mathcal{D}$ where \mathcal{C} was based topological spaces and \mathcal{D} was based topological spaces or spectra. In manifold calculus, we will instead work with functors $\mathcal{O}(M)^{o p} \rightarrow$ Top, where $\mathcal{O}(M)$ is the category of open subsets of a manifold M with morphisms given by inclusion.

Definition 1.1. We say that $F: \mathcal{O}(M)^{o p} \rightarrow$ Top is good if
(1) F takes isotopy equivalences to homotopy equivalences, and
(2) For any sequence of inclusions of open sets

$$
U_{0} \subseteq \cdots \subseteq U_{i} \subseteq \cdots,
$$

the map

$$
F(U) \rightarrow \operatorname{holim}_{i}\left(U_{i}\right)
$$

is a homotopy equivalence.
All of the functors we work with today are good, so we won't worry too much about these conditions.

Example 1.2. The functors $M a p(-, N): U \mapsto M a p(U, N), \operatorname{Imm}(-, N)$, and $\operatorname{Emb}(-, N)$ are all good. Studying the functor $\operatorname{Emb}(-, N)$ was the original motivation for these techniques.

2. Polynomial functors

Recall that a function f is linear if $f(x+y)-f(x)-f(y)=0$. We would like an analogy of this for functors.

Definition 2.1. We say that $F: \mathcal{O}(M)^{o p} \rightarrow$ Top is linear if for all $V, W \subseteq M$, the total homotopy fiber of

is contractible. Equivalently, this square is a homotopy pullback square.

As stated, this condition is hard to generalize to higher degrees. In other words, what is a polynomial functor of degree k ?

Definition 2.2. We say that F is polynomial of degree ≤ 1 if for all $U \in \mathcal{O}(M)$ and for all disjoint, nonempty, closed subsets $A_{0}, A_{1} \subseteq V$, the diagram

is homotopy cartesian.
Note that this recovers the previous definition if $W=U-A_{0}$ and $V=U-A_{1}$.
Example 2.3. The functors $\operatorname{Map}(-, N)$ and $\operatorname{Imm}(-, N)$ are both polynomial of degree ≤ 1.

Definition 2.4. We say that F is polynomial of degree $\leq k$ if for all $V \in \mathcal{O}(M)$, for all pairwise disjoint nonempty closed subsets $A_{0}, \ldots, A_{k} \subseteq V$, the $(k+1)$-cube $P(\underline{k+1}) \rightarrow$ Top formed by sending $S \mapsto F\left(V-\cup_{i \in S} A_{i}\right)$ is homotopy cartesian.

Remark 2.5. This ends up coinciding with the definition of k-excisive.
2.1. Taylor tower. Before we begin, we note that the standard notation in the manifold calculus literature differs from the notation in the homotopy calculus literature which was used in previous weeks.

Definition 2.6. Let $\mathcal{O}_{k}(M)$ be the subcategory of $\mathcal{O}(M)$ whose objects are the open subsets of M which are diffeomorphic to at most k open balls in M.

Definition 2.7. The k-th stage of the Taylor tower is defined by setting

$$
T_{k} F(V)=\operatorname{holim}_{U \in \mathcal{O}_{k}(V)} F(U) .
$$

This is the right homotopy Kan extension of the inclusion of $\mathcal{O}_{k}(M)$ into $\mathcal{O}(M)$.
We have natural transformations which are given by the maps of homotopy limits induced by the inclusion of $\mathcal{O}_{k}(V) \hookrightarrow \mathcal{O}(V)$. This gives

$$
F(V) \simeq \operatorname{holim}_{U \in \mathcal{O}(V)} F(U) \rightarrow \operatorname{holim}_{U \in \mathcal{O}_{k}(V)} F(U)=T_{k} F(V)
$$

where the first equivalence follows since V is a final object in $\mathcal{O}(V)$. These maps fit into a tower of functors and natural transformations called the Taylor tower:

where the maps $T_{k} F \rightarrow T_{k-1} F$ are induced by the inclusions $\mathcal{O}_{k-1}(V) \rightarrow \mathcal{O}_{k}(V)$. We obtain a map $F \rightarrow T_{\infty} F$ by taking the limit over k. We say that the tower converges if this map is an equivalence.

Definition 2.8. Let $L_{k} F=\operatorname{hofib}\left(T_{k} F \rightarrow T_{k-1} F\right)$ be the k-th layer of this tower.
Theorem 2.9 (Weiss, 1999). (1) $T_{k} F$ is polynomial of degree $\leq k$.
(2) If F is polynomial of degree $\leq k$, then $F \rightarrow T_{k} F$ is a weak equivalence.

3. Derivatives

It turns out that understanding the layers of the Taylor tower is equivalent to understanding the derivatives of F. More specifically, we need to understand the derivatives of F at the empty set.

Definition 3.1. Let B_{1}, \ldots, B_{k} be pairwise disjoint open balls in M. We can define a k-cube of spaces

$$
S \mapsto F\left(\cup_{i \notin S} B_{i}\right)
$$

The k-th derivative of F at \emptyset is the total homotopy fiber of this cube. We will denote this by $F^{(k)}(\emptyset)$.

Example 3.2. For $k=2$, take the total homotopy fiber of the square

We will work out some specific examples in the problem session.
How do the derivatives help us understand the layers of the Taylor tower?
Proposition 3.3. Suppose that F is good. If $F^{(k)}(\emptyset)$ is c_{k}-connected, then $L_{k} F(M)$ is $\left(c_{k}-k m\right)$-connected.

For $U \subseteq M$, if U has handle dimension j, then $L_{k} F(U)$ is $\left(c_{k}-k j\right)$-connected. Recall that, roughly speaking, U has handle dimension j if j is the smallest integer such that U admits a handlebody decomposition using handles of dimension j)

4. The embeddings functor

Fact 4.1. There is an equivalence

$$
T_{1} \operatorname{Emb}(V, N) \simeq T_{1} \operatorname{Imm}(V, N) \simeq \operatorname{Imm}(V, N)
$$

The second equivalence follows from the fact that $\operatorname{Imm}(-, N)$ is polynomial of degree ≤ 1, and the second fact follows from the fact that balls are contractible.

The Taylor tower then has the form

This gives us a precise idea of how to lift an immersion to an embedding.
4.1. Derivatives of embeddings. Recall that we are applying the functor to disjoint open balls. In other words, we are computing the total homotopy fiber of cubes of spaces of the form $\operatorname{Emb}\left(B_{1} \cup \cdots \cup B_{i}, N\right)$. We know that each $B_{\ell} \simeq *$, so we can instead think of this as embedding of i points in n :

$$
\operatorname{Emb}\left(B_{1} \cup \cdots \cup B_{i}, N\right) \simeq \operatorname{Emb}\left(\left\{x_{1}, \ldots, x_{i}\right\}, N\right)=\operatorname{Conf}(i, N)
$$

The right-hand side is the configuration space of i points in N.
Fact 4.2 (Fadell-Neuwirth). The projection maps

$$
\operatorname{Conf}(i+1, N) \rightarrow \operatorname{Conf}(i, N)
$$

are fibrations.
Example 4.3. For $k=2$ and $N=\mathbb{R}^{n}$, we are considering the square

The bottom-right corner is contractible, so the right-hand vertical fiber is contractible. The left-hand vertical fiber is S^{n-1}, so the total homotopy fiber is S^{n-1}.

It turns out that for larger k, we get wedges of spheres.
The analogous result for general manifolds is harder, but follows a similar proof.
Proposition 4.4 (Weiss). In general, we have $\operatorname{Emb}^{(k)}(\emptyset, N)$ is $(k-1)(n-2)$ connected.

This tells us that $L_{k} \operatorname{Emb}(M, N)$ is $(k-1)(n-2)-k m=(k(n-m-2)-n+2)-$ connected, where $\operatorname{dim}(M)=m$ and $\operatorname{dim}(N)=n$. We can then apply results of Goodwillie to obtain the following result about the Taylor tower:

Theorem 4.5 (Goodwillie-Weiss). The map

$$
\operatorname{Emb}(M, N) \rightarrow T_{k} \operatorname{Emb}(M, N)
$$

is $(k(n-m-2)-m+1)$-connected. In particular, the tower converges to $\operatorname{Emb}(M, N)$ when $n>m+2$.

In homotopy calculus, we considered analyticity using homogeneous functors. There is an analogous notion in manifold calculus, but we used this approach today to see something new.

