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1. Introduction

Manifold calculus follows the same philosophy as homotopy calculus; however, nei-
ther is a special case of the other. Today’s techniques will follow 1996 work of Weiss
and Goodwillie.

Recall that for homotopy calculus, we worked with functors F : C → D where
C was based topological spaces and D was based topological spaces or spectra. In
manifold calculus, we will instead work with functors O(M)op → Top, where O(M)
is the category of open subsets of a manifold M with morphisms given by inclusion.

Definition 1.1. We say that F : O(M)op → Top is good if

(1) F takes isotopy equivalences to homotopy equivalences, and
(2) For any sequence of inclusions of open sets

U0 ⊆ · · · ⊆ Ui ⊆ · · · ,
the map

F (U)→ holimi(Ui)

is a homotopy equivalence.

All of the functors we work with today are good, so we won’t worry too much about
these conditions.

Example 1.2. The functors Map(−, N) : U 7→Map(U,N), Imm(−, N), and Emb(−, N)
are all good. Studying the functor Emb(−, N) was the original motivation for these
techniques.

2. Polynomial functors

Recall that a function f is linear if f(x + y)− f(x)− f(y) = 0. We would like an
analogy of this for functors.

Definition 2.1. We say that F : O(M)op → Top is linear if for all V,W ⊆ M , the
total homotopy fiber of

F (V ∪W ) F (V )

F (W ) F (V ∩W ).

is contractible. Equivalently, this square is a homotopy pullback square.
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As stated, this condition is hard to generalize to higher degrees. In other words,
what is a polynomial functor of degree k?

Definition 2.2. We say that F is polynomial of degree ≤ 1 if for all U ∈ O(M) and
for all disjoint, nonempty, closed subsets A0, A1 ⊆ V , the diagram

F (U) F (U − A0)

F (U − A1) F (U − (A0 ∪ A1))

is homotopy cartesian.

Note that this recovers the previous definition if W = U − A0 and V = U − A1.

Example 2.3. The functors Map(−, N) and Imm(−, N) are both polynomial of
degree ≤ 1.

Definition 2.4. We say that F is polynomial of degree ≤ k if for all V ∈ O(M),
for all pairwise disjoint nonempty closed subsets A0, . . . , Ak ⊆ V , the (k + 1)-cube
P (k + 1)→ Top formed by sending S 7→ F (V − ∪i∈SAi) is homotopy cartesian.

Remark 2.5. This ends up coinciding with the definition of k-excisive.

2.1. Taylor tower. Before we begin, we note that the standard notation in the man-
ifold calculus literature differs from the notation in the homotopy calculus literature
which was used in previous weeks.

Definition 2.6. Let Ok(M) be the subcategory of O(M) whose objects are the open
subsets of M which are diffeomorphic to at most k open balls in M .

Definition 2.7. The k-th stage of the Taylor tower is defined by setting

TkF (V ) = holimU∈Ok(V )F (U).

This is the right homotopy Kan extension of the inclusion of Ok(M) into O(M).
We have natural transformations which are given by the maps of homotopy limits

induced by the inclusion of Ok(V ) ↪→ O(V ). This gives

F (V ) ' holimU∈O(V )F (U)→ holimU∈Ok(V )F (U) = TkF (V ),

where the first equivalence follows since V is a final object in O(V ). These maps fit
into a tower of functors and natural transformations called the Taylor tower :
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T∞F

...

T2F

F T1F.

where the maps TkF → Tk−1F are induced by the inclusions Ok−1(V )→ Ok(V ). We
obtain a map F → T∞F by taking the limit over k. We say that the tower converges
if this map is an equivalence.

Definition 2.8. Let LkF = hofib(TkF → Tk−1F ) be the k-th layer of this tower.

Theorem 2.9 (Weiss, 1999). (1) TkF is polynomial of degree ≤ k.
(2) If F is polynomial of degree ≤ k, then F → TkF is a weak equivalence.

3. Derivatives

It turns out that understanding the layers of the Taylor tower is equivalent to
understanding the derivatives of F . More specifically, we need to understand the
derivatives of F at the empty set.

Definition 3.1. Let B1, . . . , Bk be pairwise disjoint open balls in M . We can define
a k-cube of spaces

S 7→ F (∪i/∈SBi).

The k-th derivative of F at ∅ is the total homotopy fiber of this cube. We will denote
this by F (k)(∅).

Example 3.2. For k = 2, take the total homotopy fiber of the square

F (B1 ∪B2) F (B1)

F (B1) F (∅).

We will work out some specific examples in the problem session.
How do the derivatives help us understand the layers of the Taylor tower?

Proposition 3.3. Suppose that F is good. If F (k)(∅) is ck-connected, then LkF (M)
is (ck − km)-connected.

For U ⊆ M , if U has handle dimension j, then LkF (U) is (ck − kj)-connected.
Recall that, roughly speaking, U has handle dimension j if j is the smallest integer
such that U admits a handlebody decomposition using handles of dimension j)
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4. The embeddings functor

Fact 4.1. There is an equivalence

T1Emb(V,N) ' T1Imm(V,N) ' Imm(V,N).

The second equivalence follows from the fact that Imm(−, N) is polynomial of
degree ≤ 1, and the second fact follows from the fact that balls are contractible.

The Taylor tower then has the form

...

T2Emb(V,N)

Emb(V,N) Imm(V,N).

This gives us a precise idea of how to lift an immersion to an embedding.

4.1. Derivatives of embeddings. Recall that we are applying the functor to dis-
joint open balls. In other words, we are computing the total homotopy fiber of cubes
of spaces of the form Emb(B1 ∪ · · · ∪ Bi, N). We know that each B` ' ∗, so we can
instead think of this as embedding of i points in n:

Emb(B1 ∪ · · · ∪Bi, N) ' Emb({x1, . . . , xi}, N) = Conf(i, N).

The right-hand side is the configuration space of i points in N .

Fact 4.2 (Fadell-Neuwirth). The projection maps

Conf(i + 1, N)→ Conf(i, N)

are fibrations.

Example 4.3. For k = 2 and N = Rn, we are considering the square

Conf(2,Rn) Conf(1,Rn)

Conf(1,Rn) Conf(0,Rn).

The bottom-right corner is contractible, so the right-hand vertical fiber is contractible.
The left-hand vertical fiber is Sn−1, so the total homotopy fiber is Sn−1.

It turns out that for larger k, we get wedges of spheres.

The analogous result for general manifolds is harder, but follows a similar proof.

Proposition 4.4 (Weiss). In general, we have Emb(k)(∅, N) is (k − 1)(n − 2)-
connected.
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This tells us that LkEmb(M,N) is (k− 1)(n− 2)− km = (k(n−m− 2)− n + 2)-
connected, where dim(M) = m and dim(N) = n. We can then apply results of
Goodwillie to obtain the following result about the Taylor tower:

Theorem 4.5 (Goodwillie-Weiss). The map

Emb(M,N)→ TkEmb(M,N)

is (k(n−m−2)−m+1)-connected. In particular, the tower converges to Emb(M,N)
when n > m + 2.

In homotopy calculus, we considered analyticity using homogeneous functors. There
is an analogous notion in manifold calculus, but we used this approach today to see
something new.


