Problem Session 4
 2/14/19

Recall that F is polynomial of degree $\leq k$ if for all $V \in \mathcal{O}(M)$ and nonempty, pairwise disjoint, closed $A_{0}, \ldots, A_{k} \subseteq V$, the $(k+1)$-cube

$$
S \mapsto F\left(V-\cup_{i \in S} A_{i}\right)
$$

is homotopy cartesian.

1. Show that the functor $U \mapsto \operatorname{Emb}(U, N)$ is not polynomial of degree ≤ 1.
2. Show that the functor $U \mapsto \operatorname{Map}\left(U^{k}, N\right)$ is polynomial of degree $\leq k$.
3. Show that if F is polynomial of degree $\leq k$ then it is also polynomial of degree $\leq k+1$.

Recall the definition of the k th derivative of F,

$$
F^{(k)}(\emptyset)=\text { thofiber }\left(S \mapsto F\left(\cup_{i \notin S} B_{i}\right)\right)
$$

where the B_{i} are pairwise disjoint open balls in M.
4. Let $F(-)=\operatorname{Map}(-, N)$. Compute $F^{(1)}(\emptyset)$ and $F^{(2)}(\emptyset)$ from the definition. What is $F^{(k)}(\emptyset)$ in general?
5. Show that if F is polynomial of degree $\leq k$, then it has contractible derivatives of order $\geq k+1$.

