

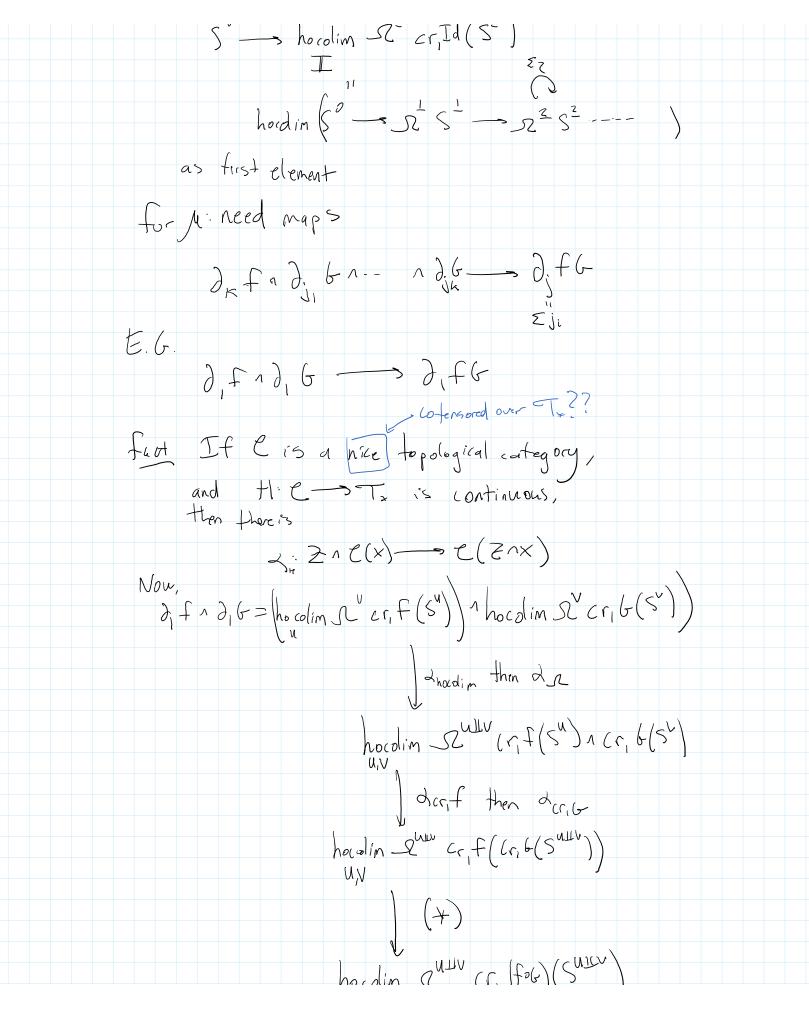
hodim 6 - hodim 6
IT
Is an equiv.
Well see in a bit why over I can be nicer
Real (1) Symmetric sequence in cut C = funder
$$\Sigma - 2C$$

(2) C-man fit: $\Sigma - C$, we define
 $(f \circ G)(2) = \bigvee S(k) n G(n) n - n G(nk)$
 $n = man$
(3) an operal is anomoid it has amap
for - of
[Sn altim on for so that this is correct
det of operad]

Part 2: Yeaky Smedel Det (Veakel's (r effect) for f: Tratu, detme Craf: Traty $(r_1 \neq (x) = f_{ib}(f(x) - f(x)))$ $(\bigcap_{n} f(x_{1}, \dots, x_{n})) = (\bigcap_{n}^{(n)} f(x_{1}, \dots, x_{n})) = (\bigcap_{n}^{(n)} f(x_{1}, \dots, x_{n}) = (\bigvee_{n}^{(n)} f(x_{1}, \dots, x_{n})) = (\bigvee_{n}^{(n)} f(x_{1}, \dots, x_{n}) = \bigvee_{n}^{(n)} f(x_{1}, \dots, x_{n}) = \bigvee_{n}^{(n)} f(x_{1}, \dots, x_{n}) = \bigvee_{n}^{(n)} f(x_{1}, \dots, x_{n}) = f(x_{n})$ That is, (rn ogs fibris one direction at a time instead of fotal fiber of cube Lemma Cr.f. has assembly maps in each variable. egn=2 $2n(cr_2f)(x,y) \longrightarrow (cr_2f)(2nx,y)$ e.g. $(i_n f(2_i, z_2, -- z_n))$, $z_n - equiverrent$ No assertion of equiv or anything Now similar to before, define derivs $\begin{array}{c} \hline Main Def \\ \hline Orakel's derivs \end{array} \\ \hline \partial_n f := how lim \underbrace{S^{\mu}_{\mu} \cdot S^{\mu}_{\mu} \cdot S^$ Daly diff from Good willie = over I not N

The If f is Stably 1-excisive then there
$$\beta$$

induced by $N^n \rightarrow I^n$ is an quinchere
Recall analytic \Rightarrow stady increasing then
Taylor their to $f_n(c, tr)$
taylor their $f_n(c, tr)$
 $f_n(the theorem for $f_n(the theorem theorem theorem for $f_n(the theorem theorem$$$



hold in
$$\mathcal{L}^{\mu}$$
 \mathcal{U}^{μ} $(\mathcal{F}_{1}(\mathcal{F}_{2}(\mathcal{F}_{2})))$
hold in \mathcal{L}^{μ} \mathcal{L}^{μ} \mathcal{L}^{μ} \mathcal{L}^{μ}
hold in \mathcal{T}^{μ} \mathcal{C}^{μ} $\mathcal{F}_{2}(\mathcal{F}_{2})$
 \mathcal{L}^{μ} \mathcal{L}^{μ} \mathcal{L}^{μ}
 \mathcal{L}^{μ} \mathcal{L}^{μ} \mathcal{L}^{μ}
 \mathcal{L}^{μ} \mathcal{L}^{μ}
 \mathcal{L}^{μ} \mathcal{L}^{μ}
 \mathcal{L}^{μ} \mathcal{L}^{μ}
 \mathcal{L}^{μ} \mathcal{L}^{μ}
 \mathcal{L}^{μ} \mathcal{L}^{μ}
 \mathcal{L}^{μ} \mathcal{L}^{μ}
 \mathcal{L}^{μ} \mathcal{L}^{μ}
 \mathcal{L}^{μ} \mathcal{L}^{μ}
 \mathcal{L}^{μ} \mathcal{L}^{μ}
 \mathcal{L}^{μ} \mathcal{L}^{μ}
 \mathcal{L}^{μ} \mathcal{L}^{μ}
 \mathcal{L}^{μ} \mathcal{L}^{μ}
 \mathcal{L}^{μ} \mathcal{L}^{μ}
 \mathcal{L}^{μ} \mathcal{L}^{μ}
 \mathcal{L}^{μ} \mathcal{L}^{μ}
 \mathcal{L}^{μ} \mathcal{L}^{μ}
 \mathcal{L}^{μ} \mathcal{L}^{μ}
 \mathcal{L}^{μ} \mathcal{L}^{μ}
 \mathcal{L}^{μ} \mathcal{L}^{μ}
 \mathcal{L}^{μ} \mathcal{L}^{μ}
 \mathcal{L}^{μ} \mathcal{L}^{μ}
 \mathcal{L}^{μ} \mathcal{L}^{μ}
 \mathcal{L}^{μ} \mathcal{L}^{μ}
 \mathcal{L}^{μ} \mathcal{L}^{μ}
 \mathcal{L}^{μ} \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ} \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}
 \mathcal{L}^{μ}

Thus de is monoidal. RMK Can define spectrum drf $(\frac{\partial f}{\partial t})_{\ell} = \frac{hocolim \mathcal{N}' - \mathcal{N}'}{\mathcal{N}_{\ell} - \mathcal{N}'} (S^{\ell})_{\ell} - S^{\ell})$ $falt \cdot \mathcal{R}^{\circ} \partial_{n} f \simeq \partial_{n} f$ o dnt ~ dnt (bood wilke det of sp) • $\partial_{\underline{\Lambda}}: fan(\underline{T}_{*}, \underline{T}_{r}) \longrightarrow fan(\underline{\mathcal{E}}, \underline{S}_{\underline{\beta}})$ also monoida

Part 3: Chain rule Tuesday, March 5, 2019 9:30 PM Nou: dn is always a spectrum. · D. Idis un operad. IdoId - Id ~ > d, Ido d, Id - > d, Id ·) + f is a dy Id bi module from foId= Idof = f ° (an form diagram ∂. f • ∂. f <==), f • ∂. t d • ∂. 6 <= Let $\partial_{x} f_{o} \partial_{x} b = hocolim()$ This Let F, 6 be Strictly reduced, finitary, analytic 9x to 9x6 -> 9x(fob) extends to an equivalence $j' t \circ j' c \longrightarrow j' (t \circ c)$ pf Extension easy: dy takes Bar(f, Id, 6) --> Fo 6 Bar (dif, dyid, dx b) - dr (fo 6) 40

Strategy Finitum is key. Short ut 6 arbitraty,

$$F = H_X = H_{0n}(k, -)$$
 X=finit CW
Filer Say (st funders)
 $H_{0n}(VS, -) \rightarrow H_{0n}(k_{in} -) \rightarrow H_{0n}(k_{in} -)$
Lemma ∂_k takes fiber seas of functors
to " of spectra E_2
Apply Bar(-, $\partial_x Id, \partial_x Id$) to $\partial_x above$
(Bue proverses of the Says)
Now:
 ∂_k Hus: ∂_{xid} $\rightarrow \partial_k$ Hun ∂_{xid} $\rightarrow \partial_k$ Hus; ∂_{xid} G
 \int_{K} Hus: ∂_{xid} $\rightarrow \partial_k$ Hun ∂_{xid} $\rightarrow \partial_k$ Hus; ∂_{xid} G
 \int_{K} Hus: ∂_{xid} $\rightarrow \partial_k$ (Hun G) $\rightarrow \partial_k$ (Hus; ∂_x G
 \int_{K} (Hus: G) $\rightarrow \partial_k$ (Hun G) $\rightarrow \partial_k$ (Hus; G)
 \int_{K} (Hus: G) $\rightarrow \partial_k$ (Hun G) $\rightarrow \partial_k$ (Hus; G)

