Linear algebra: Free Lie algebras

The purpose of this sheet is to fill the details in the algebraic part of the proof of the Hilton-Milnor theorem. By the way, the whole proof can be found in Neisendorfer's book "Algebraic Methods in Unstable Homotopy Theory."

Conventions: \mathbf{k} is a field of characteristic $\neq 2$, all vector spaces are positively graded vector spaces over \mathbf{k} and each graded component is finite dimensional, all associative algebras are connected and augmented. If A is an associative algebra, then $I(A)$ is its augmentation ideal (i.e. the kernel of the augmentation morphism).

Problem 1 (Graded Nakayama Lemma). Let A be an associative algebra and let M be a graded A-module such that $M_{n}=0$, for $n \ll 0$.
(a) If $I(A) \cdot M=M$, then $M=0$;
(b) If $\mathbf{k} \otimes_{A} M=0$, then $M=0$.

Problem 2. Let A be an associative algebra and let V be a vector subspace of $I(A)$. Suppose that the augmentation ideal $I(A)$ is a free A-module generated by V. Prove that A is isomorphic to $T(V)$.
Problem 3. Let A be an associative algebra such that $\operatorname{Tor}_{2}^{A}(k, k)=0$. Prove that A is isomorphic to the tensor algebra $T(V)$, where $V:=I(A) / I(A)^{2}$ - the module of indecomposables.

Problem 4. Let L be a Lie algebra such that its universal enveloping associative algebra $U(L)$ is isomorphic to $T(V)$ for some V. Prove that L is isomorphic to the free Lie algebra $L(V)$. Hint: use a corollary of the Poincare-Birkhoff-Witt theorem which says that any Lie algebra L canonically injects into $U(L)$.

Problem 5. Let $L(V)$ be a free Lie algebra and let $L^{\prime} \subset L(V)$ be a Lie subalgebra. Then L^{\prime} is also free, that is, there is a vector space W such that $L^{\prime} \cong L(W)$.

Problem 6. Denote by $h_{V}(t)$ the Poincare series of a vector space V, that is $h_{V}(t):=\sum t^{i} \operatorname{dim} V_{i}$. Prove
(a)

$$
h_{T(V)}(t)=\frac{1}{1-h_{V}(t)}
$$

(b) Suppose that $0 \rightarrow L^{\prime} \rightarrow L \rightarrow L^{\prime \prime} \rightarrow 0$ is a split short exact sequence of Lie algebras and suppose that $L \cong L(V)$ is a free Lie algebra. Then $L^{\prime} \cong L(W)$ for some W and the Poincare series of W is equal to

$$
h_{W}(t)=1+\left(1-h_{V}(t)\right) \cdot h_{U L^{\prime \prime}}(t) .
$$

Problem 7. Identify the kernel of the natural projection $L(V \oplus W) \rightarrow L(V)$.
Problem 8. Prove the algebraic Hilton-Milnor theorem. There is a natural isomorphism:

$$
T(V \oplus W) \cong T(V) \otimes T\left(\bigoplus_{k \geq 0} V^{\otimes k} \otimes W\right)
$$

