Numerical Methods for Parabolic Equations-I

Grétar Tryggvason
Spring 2010

Computational Fluid Dynamics I
http://users.wpi.edu/~gretar/me612.html

Solution Methods for Parabolic Equations

One-Dimensional Problems
- Explicit, implicit, Crank-Nicolson
- Accuracy, stability
- Various schemes

Multi-Dimensional Problems
- Alternating Direction Implicit (ADI)
- Approximate Factorization of Crank-Nicolson

Splitting
Stability in terms of fluxed

One-Dimensional Problems
- Explicit, implicit, Crank-Nicolson
- Accuracy, stability
- Various schemes

Multi-Dimensional Problems
- Alternating Direction Implicit (ADI)
- Approximate Factorization of Crank-Nicolson

Consider the diffusion equation
\[\frac{\partial f}{\partial t} = \alpha \frac{\partial^2 f}{\partial x^2}, \quad t > 0, \quad a < x < b \]
which is a parabolic equation requiring

\[f(x,0) = f_0(x) \quad \text{Initial Condition} \]
\[f(a,t) = \phi_a(t); \quad f(b,t) = \phi_b(t) \quad \text{Boundary Condition (Dirichlet)} \]

or
\[\frac{\partial f}{\partial x}(a,t) = \phi'_a(t); \quad \frac{\partial f}{\partial x}(b,t) = \phi'_b(t) \quad \text{Boundary Condition (Neumann)} \]

Parabolic equations can be viewed as the limit of a hyperbolic equation with two characteristics as the signal speed goes to infinity.

Increasing signal speed

Approximate the derivatives:
\[\frac{\partial f}{\partial x} \left(\frac{f_{j+1}^{n+1} - f_j^n}{\Delta} \right) = \frac{\partial^2 f}{\partial x^2} \left(\frac{f_{j+1}^{n+1} - 2f_j^n + f_{j-1}^n}{\Delta^2} \right) \]
Explicit: FTCS

\[
f_{j+1} - f_j = \alpha \frac{f_{j+1} - 2f_j + f_{j-1}}{h^2}
\]

\[
f_{j+1} = f_j + \frac{\alpha \Delta t}{h^2} \left(f_{j+1} - 2f_j + f_{j-1}\right)
\]

Stability: von Neumann Analysis

\[
\frac{\epsilon^{n+1}}{\epsilon^n} = 1 - 4 \cdot \frac{\alpha \Delta t}{h^2} \sin^2 \left(\frac{\beta}{2}\right) \left[G = 1 - 4r \sin^2 \left(\frac{\beta}{2}\right) \right]
\]

\[-1 < 1 - 4 \cdot \frac{\alpha \Delta t}{h^2} < 1
\]

\[0 \leq \frac{\alpha \Delta t}{h^2} < \frac{1}{2}\]

Fourier Condition

Implicit Method: Backward Euler

\[
f_{j+1} - f_j = \alpha \frac{f_{j+1} - 2f_j + f_{j-1}}{h^2}
\]

\[-rf_{j+1} + (2r + 1)f_j - rf_{j-1} = f_j \quad (r = \alpha \Delta t / h^2)
\]

Tri-diagonal matrix system

\[
\frac{\partial f}{\partial t} - \alpha \frac{\partial^2 f}{\partial x^2} = \frac{\alpha h^2}{12} (1 - 6r) f_{xx} + O(\Delta t^2, h^2, \Delta_x, h^4) f_{xxx}
\]

where \(r = \frac{\alpha \Delta t}{h^2} \)

- Accuracy \(O(\Delta t, h^2) \)
- If \(r = 1/6 \), then \(O(\Delta t^2, h^2) \)
- No odd derivatives; dissipative

Boundary effect is not felt at \(P \) for many time steps
This may result in unphysical solution behavior

Unconditionally stable
Stability Property

\[\frac{1}{2} \leq \theta \leq 1 \quad \text{unconditionally stable} \]

\[0 \leq \theta < \frac{1}{2} \quad \text{stable only if} \]

\[0 \leq r \leq \frac{1}{2 - 4\theta} \]

Modified Equation

\[\frac{\partial f}{\partial t} - \alpha \frac{\partial^2 f}{\partial x^2} = \frac{\alpha h^2}{12} f_{n+1} - \frac{\alpha h^2}{12} f_n + \frac{1}{360} \alpha^2 h^2 f_{n+1} - f_n \]

- Second-order accuracy \(O(\Delta x^2, h^3) \)

Amplification Factor (von Neumann analysis)

\[G = \frac{1 - r (1 - \cos \beta)}{1 + r (1 - \cos \beta)} \]

Unconditionally stable

Combined Method A - 1

Generalization

\[f_j^{n+1} - f_j^n = \alpha \left(f_j^{n+1} - 2f_j^n + f_j^{n-1} + (1 - \theta) f_j^{n+1} - 2f_j^n + f_j^{n+1} \right) \]

\[\theta = \begin{cases} 0 & \text{Explicit (FTCS)} \\ 1 & \text{Implicit} \\ 1/2 & \text{Crank-Nicolson} \end{cases} \]

\[n+1 \quad \times \theta \]

\[n \]

\[j-1 \quad j \quad j+1 \]

Modified Equation

\[f_j^{n+1} - \alpha f_j^n = \left(\frac{\theta - 1}{2} \right) \frac{\partial^2 f}{\partial x^2} + \left(\frac{\theta - 1}{3} \right) 2 \Delta x^2 + \frac{1}{6} \left(\frac{\theta - 1}{2} \right) \left(\frac{1}{12} \right) \Delta x^2 + \frac{1}{360} \alpha \Delta x^2 \]

Special Cases

\[\theta = \frac{1}{2} - \frac{1}{12r} \Rightarrow O(\Delta x^2, h^3) \]

\[\theta = \frac{1}{2} - \frac{1}{12r} \quad r = 1/\sqrt{20} \Rightarrow O(\Delta x^2, h^3) \]

Combined Method A - 2

Generalized Three-Time-Level Implicit Scheme:

\[(\theta + \theta) f_j^{n+1} - \theta f_j^n - f_j^{n+1} = \alpha \left(f_j^{n+1} - 2f_j^n + f_j^{n+1} \right) \]

\[\theta = \begin{cases} 0 & \text{Explicit} \\ 1/2 & \text{Three-level fully implicit} \end{cases} \]

\[n+1 \quad \times (\theta + \theta) \]

\[n \]

\[j-1 \quad j \quad j+1 \]

Combined Method B - 1
The Richardson method can be made stable by adding a term to the modified equation:

\[f_{n+1} = (\frac{1}{2} - \frac{1}{2}) f_n + \frac{\Delta t}{12} f_{n+1} + O(\Delta t^2) + \ldots \]

Special Cases:
- \(\theta = \frac{1}{2} \) \(\Rightarrow \) Unstable
- \(\theta = \frac{1}{2} + \frac{1}{12r} \) \(\Rightarrow \) Conditionally stable

DuFort-Frankel - 1

The Richardson method can be made stable by splitting \(f_j^n \) by time average \(\left(f_j^{n+1} + f_j^{n-1} \right) / 2 \)

\[f_j^{n+1} = f_j^{n-1} + 2r \left(f_j^n - f_j^{n-1} + f_j^{n+1} \right) \]

Diagrams:
- Richardson's Method: A Case of Failure
- DuFort-Frankel - 1
- DuFort-Frankel - 2

And others!
Consider a 2-D heat equation
\[\frac{\partial f}{\partial t} = \alpha \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right) \]

Two-dimensional grid

\[
\begin{align*}
\frac{f_{i,j}^{n+1} - f_{i,j}^{n}}{\Delta t} &= \alpha \left(f_{i+1,j}^{n} - 2f_{i,j}^{n} + f_{i-1,j}^{n} + f_{i,j+1}^{n} - 2f_{i,j}^{n} + f_{i,j-1}^{n} \right) \\
\text{If} \quad \Delta x = \Delta y &= h \\
\frac{f_{i,j}^{n+1} - f_{i,j}^{n}}{\Delta t} &= \frac{\alpha}{h^2} \left(f_{i+1,j}^{n} + f_{i-1,j}^{n} + f_{i,j+1}^{n} + f_{i,j-1}^{n} - 4f_{i,j}^{n} \right)
\end{align*}
\]
Isolate the new f_i^* and solve by iteration

$$f_i^{n+1} = \frac{1}{1+4A}(A(f_i^{n+1} + f_{i+1}^{n+1} + f_{i-1}^{n+1} + f_{i,j}^{n+1}) + f_i^*)$$

The implicit method is unconditionally stable, but it is necessary to solve a system of linear equations at each time step. Often, the time step must be taken to be small due to accuracy requirements and an explicit method is competitive.

Von Neumann Analysis

$$e^{\Delta t} = e^{\Delta t}(e^{\Delta t} + e^{\Delta t} + e^{\Delta t} + e^{\Delta t} - 4)$$

$$e^{\Delta t} = 1 + \frac{\alpha \Delta t}{h^2}(2 \cos kh + 2 \cos mh - 4)$$

$$e^{\Delta t} = 1 - \frac{\alpha \Delta t}{h^2}\left(\frac{\sin kh}{2} + \frac{\sin mh}{2}\right)$$

Worst case

$$-1 \leq 1 - \frac{8\alpha \Delta t}{h^2} \leq 1 \quad \alpha \Delta t \leq \frac{1}{4}$$

Stability limits depend on the dimension of the problems

\[
\frac{\Delta t}{h^2} = \begin{cases} \frac{1}{2} & \text{One-dimensional flow} \\ \frac{1}{4} & \text{Two-dimensional flow} \\ \frac{1}{6} & \text{Three-dimensional flow} \end{cases}
\]

Different numerical algorithms usually have different stability limits.

Recall forward in time method

$$f_i^{n+1} = f_i^n + \left(\frac{\Delta t}{h^2} \right) f_i^{n+1} + f_{i+1}^{n+1} + f_{i-1}^{n+1} - 4 f_i^n$$

Evaluate the spatial derivatives at the new time \((n+1)\), instead of at \(n\)

\[
f_i^{n+1} = f_i^n + \left(\frac{\Delta t}{h^2} \right) f_i^n + f_{i+1}^{n+1} + f_{i-1}^{n+1} - 4 f_i^n
\]

This gives a set of linear equations for the new temperatures:

\[
(1 + 4A)f_i^{n+1} - A(f_i^{n+1} + f_{i+1}^{n+1} + f_{i-1}^{n+1} + f_{i,j}^{n+1}) = f_i^n
\]

Known source term

Second order accuracy in time can be obtained by using the Crank-Nicolson method.
Crank-Nicolson Method for 2-D Heat Equation

\[
\frac{f^{n+1} - f^n}{\Delta t} = \alpha \left(\frac{\partial^2 f^{n+1}}{\partial x^2} + \frac{\partial^2 f^{n+1}}{\partial y^2} \right) + \frac{\partial^2 f^n}{\partial x^2} + \frac{\partial^2 f^n}{\partial y^2} \]

If \(\Delta x = \Delta y = h \)

\[
f_{i,j}^{n+1} = f_{i,j}^{n} + \frac{\alpha \Delta t}{2h^2} \left(f_{i+1,j}^{n+1/2} + f_{i-1,j}^{n+1/2} + f_{i,j+1}^{n+1/2} + f_{i,j-1}^{n+1/2} - 4f_{i,j}^{n+1/2} \right) + \frac{\partial^2 f^n}{\partial x^2} + \frac{\partial^2 f^n}{\partial y^2} \]

The matrix equation is expensive to solve.

Expensive to solve matrix equations.

Can larger time-step be achieved without having solve the matrix equation resulting from the two-dimensional system?

The break through came with the Alternation-Direction-Implicit (ADI) method (Peaceman & Rachford-late 1950’s)

ADI consists of first treating one row implicitly with backward Euler and then reversing roles and treating the other by backwards Euler.

In matrix form, for each row

\[
\begin{bmatrix}
 f_{i,j}^{n+1/2} \\
 f_{i+1,j}^{n+1/2} \\
 \vdots \\
 f_{i+N,j}^{n+1/2}
\end{bmatrix}
= \begin{bmatrix}
 f_{i,j}^n \\
 f_{i+1,j}^n \\
 \vdots \\
 f_{i+N,j}^n
\end{bmatrix} + \frac{\alpha \Delta t}{h^2} \begin{bmatrix}
 -2 & 1 & \cdots & 0 \\
 1 & -2 & \cdots & \vdots \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & \cdots & 1 & -2
\end{bmatrix}
\begin{bmatrix}
 f_{i,j}^{n+1/2} \\
 f_{i+1,j}^{n+1/2} \\
 \vdots \\
 f_{i+N,j}^{n+1/2}
\end{bmatrix}
\]

This equation is easily solved by forward elimination and back-substitution.

Instead of solving one set of linear equations for the two-dimensional system, solve 1D equations for each grid line.

The directions can be alternated to prevent any bias.

\[\text{Computational Fluid Dynamics I}\]

Combining the two becomes equivalent to:

\[f^{n+1} = f^n + \alpha \Delta t \left[\frac{\partial^2 f^{n+1}}{\partial x^2} + \frac{\partial^2 f^{n+1}}{\partial y^2} \right] + \frac{\partial^2 f^n}{\partial x^2} + \frac{\partial^2 f^n}{\partial y^2} \]

Step 1:
\[f^{n+1/2} - f^n = \frac{\alpha \Delta t}{2h^2} \left(f_{i+1,j}^{n+1/2} - 2f_{i,j}^{n+1/2} + f_{i-1,j}^{n+1/2} + f_{i,j+1}^{n+1/2} - f_{i,j}^{n+1/2} \right) \]

Step 2:
\[f^{n+1/2} - f^{n-1/2} = \frac{\alpha \Delta t}{2h^2} \left(f_{i+1,j}^{n+1/2} - 2f_{i,j}^{n+1/2} + f_{i,j+1}^{n+1/2} + f_{i,j}^{n-1/2} - 2f_{i,j}^{n+1/2} + f_{i,j}^{n+1/2} \right) \]

Combining the two becomes equivalent to:

\[f^{n+1} - f^n = \frac{\alpha \Delta t}{2} \left[\frac{\partial^2 f^{n+1}}{\partial x^2} + \frac{\partial^2 f^{n+1}}{\partial y^2} \right] \]

Midpoint, Trapisodial

\[\text{Computational Fluid Dynamics I}\]

Fractional Step:
\[\Delta x = \Delta y = h \]

\[f^{n+1} = f^n + \alpha \Delta t \left[\frac{\partial^2 f^{n+1}}{\partial x^2} + \frac{\partial^2 f^{n+1}}{\partial y^2} \right] + \frac{\partial^2 f^n}{\partial x^2} + \frac{\partial^2 f^n}{\partial y^2} \]

\[\text{Computational Fluid Dynamics I}\]

\[\text{Computational Fluid Dynamics I}\]
ADI Method is \(O(\Delta t^2, h^2) \) accurate

Stability Analysis: \(e^{\epsilon} = e^{\epsilon_{even}} e^{\epsilon_{odd}} \)

\[
e^{\epsilon_{even}} = e^{\frac{\alpha \Delta t}{h} \sin \frac{kh}{2}} \left[e^{\epsilon_{odd}} (e^{\Delta t - 2 + e^{\Delta t}}) + e^{\epsilon (e^{\Delta t} - 2 + e^{\Delta t})} \right]
\]

\[
e^{\epsilon_{odd}} = \frac{1 - 2 \frac{\alpha \Delta t}{h} \sin \frac{kh}{2}}{1 + 2 \frac{\alpha \Delta t}{h} \sin \frac{kh}{2}}
\]

Similarly,

\[
e^{\epsilon_{even}} = \frac{1 - 2 \frac{\alpha \Delta t}{h} \sin \frac{mh}{2}}{1 + 2 \frac{\alpha \Delta t}{h} \sin \frac{mh}{2}}
\]

Combining

\[
e^{\epsilon_{even}} \leq \left(\frac{1 - 2 \frac{\alpha \Delta t}{h} \sin \frac{kh}{2}}{1 + 2 \frac{\alpha \Delta t}{h} \sin \frac{kh}{2}} \right) \left(\frac{1 - 2 \frac{\alpha \Delta t}{h} \sin \frac{mh}{2}}{1 + 2 \frac{\alpha \Delta t}{h} \sin \frac{mh}{2}} \right) < 1
\]

Unconditionally stable!

The 3-D version does not have the same desirable stability properties. However, it is possible to generate similar methods for 3D problems

Implicit methods for parabolic equations

- Allow much larger time step (but must be balanced against accuracy!)
- Preserve the parabolic nature of the equation

But, require the solution of a linear set of equations and are therefore much more expensive than explicit methods

ADI provides a way to convert multidimensional problems into a series of 1D problems

Outline

Solution Methods for Parabolic Equations

- One-Dimensional Problems
 - Explicit, implicit, Crank-Nicolson
 - Accuracy, stability
 - Various schemes

- Multi-Dimensional Problems
 - Alternating Direction Implicit (ADI)
 - Approximate Factorization of Crank-Nicolson

Splitting

Numerical Methods for Parabolic Equations-III

Grétar Tryggvason
Spring 2010
Define δ_n by:
$$\delta_n = \left[\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 + 2 \delta_n \\ 1 \\ 1 \\ 1 + 2 \delta_n \\ 1 \\ 1 + 2 \delta_n \end{array} \right]$$

The ADI method can be written as
$$\left(1 - \frac{\alpha \Delta t}{2 \delta_n} \right) f^{n+1} = \left(1 + \frac{\alpha \Delta t}{2 \delta_n} \right) f^n$$

Eliminating $f^{n+1/2}$
$$\left(1 - \frac{\alpha \Delta t}{2 \delta_n} \right) f^{n+1/2} = \left(1 + \frac{\alpha \Delta t}{2 \delta_n} \right) f^n$$

The Crank-Nicolson for heat equation becomes
$$f^{n+1} - f^n = \frac{\alpha}{2 \Delta t} f_0$$

which can be rewritten as
$$\left(1 - \frac{\alpha \Delta t}{2 \delta_n} \right) f^{n+1} = \left(1 + \frac{\alpha \Delta t}{2 \delta_n} \right) f^n$$

Eliminating $f^{n+1/2}$
$$\left(1 - \frac{\alpha \Delta t}{2 \delta_n} \right) f^{n+1/2} = \left(1 + \frac{\alpha \Delta t}{2 \delta_n} \right) f^n$$

Define δ_n by:
$$\delta_n = \left[\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 + 2 \delta_n \\ 1 \\ 1 \\ 1 + 2 \delta_n \\ 1 \\ 1 + 2 \delta_n \end{array} \right]$$

The Crank-Nicolson for heat equation becomes
$$f^{n+1} - f^n = \frac{\alpha}{2 \Delta t} f_0$$

which can be rewritten as
$$\left(1 - \frac{\alpha \Delta t}{2 \delta_n} \right) f^{n+1} = \left(1 + \frac{\alpha \Delta t}{2 \delta_n} \right) f^n$$

Eliminating $f^{n+1/2}$
$$\left(1 - \frac{\alpha \Delta t}{2 \delta_n} \right) f^{n+1/2} = \left(1 + \frac{\alpha \Delta t}{2 \delta_n} \right) f^n$$

Up to a factor:
$$\left(1 - \frac{\alpha \Delta t}{2 \delta_n} \right) f^{n+1/2} = \left(1 + \frac{\alpha \Delta t}{2 \delta_n} \right) f^n$$

ADI is an approximate factorization of the Crank-Nicolson method
Why splitting?

1. Stability limits of 1-D case apply.
2. Different Δt can be used in x and y directions.

Implicit time marching by fast elliptic solvers

Stability from a flux point of view

Can be solved by elliptic solvers

Initial conditions

All other temperatures are unchanged

$$T_j^{n+1} = T_j^n + \frac{\Delta \alpha}{h^2} \left(T_{j+1}^n - 2 T_j^n + T_{j-1}^n \right)$$

$$T_j^{n+1} = T_j^n + \frac{\Delta \alpha}{h^2} \left(T_{j+1}^n + 2 T_j^n + T_{j-1}^n \right)$$

$$T_j^{n+1} = T_j^n + \frac{\Delta \alpha}{h^2} \left(0 - 0 + 1 \right) = \frac{\Delta \alpha}{h^2}$$
One-dimensional unsteady diffusion by the FTCS scheme

```matlab
% one-dimensional unsteady diffusion by the FTCS scheme

n=40; nstep=300; length=2.0; h=length/(n-1); diff=0.05;
time=0; T=zeros(n,1); T(1)=1.0; dt=0.65*h^2/diff;
for m=1:nstep
    hold off; plot(T,'linewidt',2); axis([1 n -1.0, 1.0]);
    set(gca,'FontSize',24); set(gca,'LineWidth',2); pause;
    To=T;
    for i=2:n-1,
        T(i)=To(i)+diff*(dt/h^2)*(To(i+1)-2*To(i)+To(i-1));
        time=time+dt;
    end
end;
```

Multi-Dimensional Problems

- Alternating Direction Implicit (ADI)
- Approximate Factorization of Crank-Nicolson

Splitting

Stability in terms of fluxed