1. Use a calculator and the the fact that $\sin \theta \approx \theta$ for any small angle θ (in radians) to calculate an approximation of $\sin 3^{\circ}$. Then use your calculator again to compute $\sin 3^{\circ}$ directly and compare what you get with your approximation.
2. Let r_{M} and r_{S} be the radii of the Moon and the Sun respectively, and let D_{M} and D_{S} be the distances from the Earth to the Moon and Sun respectively. A Greek philosopher looks out at the sky and sees a solar eclipse (the precise time on which the Moon just barely but completely blocks out the light coming from the Sun). He is aware of the estimate of 2° for the angular diameters of both the Sun and the Moon. He draws a very careful diagram of what he observes and correctly writes down all the information about r_{M}, r_{S}, D_{M}, and D_{S} that his diagram provides. What diagram did he draw and what information did he write down?
3. Draw a circle of radius 3. Put in a diameter $A B$ and choose a point C on the circle such that
the angle $\angle C A B$ is 30°. Determine the lengths of the segments $A C$ and $B C$. Find then area of the triangle $\triangle A B C$.
