Consider the function $f(x)=\frac{1}{x^{2}}$ with $x>0$ and its graph and turn to Turn to Figure (a).

1. Show that the volume that the region under the graph of $f(x)=\frac{1}{x^{2}}$ over the interval $[1,+\infty)$ generates is $\lim _{c \rightarrow+\infty} \pi \int_{1}^{c}\left(\frac{1}{x^{2}}\right)^{2} d x$. Show that the value of this improper integral is 1 .

(a)

(b)
2. Show that the surface area generated by the graph of $f(x)=\frac{1}{x^{2}}$ over the interval $[1,+\infty)$ is given by $\lim _{c \rightarrow+\infty} 2 \pi \int_{1}^{c} \frac{1}{x^{5}} \sqrt{x^{6}+4} d x$. The antiderivative of $\frac{1}{x^{5}} \sqrt{x^{6}+4}$ that the application of the fundamental theorem requires seems impossible to come by and may not be an elementary function. (The site http://www.integral-calculator.com/\# does not provide it.)

However, it is possible to show that show that $\lim _{c \rightarrow+\infty} 2 \pi \int_{1}^{c} \frac{1}{x^{5}} \sqrt{x^{6}+4} d x$ is finite. The argument follows below. Provide the details.
3. Explain why $x^{6}+4<\left(x+2^{\frac{1}{3}}\right)^{6}$. Conclude that $\sqrt{x^{6}+4}<\left(x+2^{\frac{1}{3}}\right)^{3}$, and show that

$$
\begin{aligned}
\int_{1}^{c} \frac{1}{x^{5}} \sqrt{x^{6}+4} d x & <\int_{1}^{c}\left(x^{-2}+2^{\frac{1}{3}} x^{-3}+2^{\frac{2}{3}} x^{-4}+4 x^{-5}\right) d x=\left.\left(-x^{-1}-\frac{1}{2^{\frac{2}{3}}} x^{-2}-\frac{2^{\frac{2}{3}}}{3} x^{-3}-x^{-4}\right)\right|_{1} ^{c} \\
& =\left(1+\frac{1}{2^{\frac{2}{3}}}+\frac{2^{\frac{2}{3}}}{3}+1\right)-\left(\frac{1}{c}+\frac{1}{2^{\frac{2}{3}}} \frac{1}{c^{2}}+\frac{2^{\frac{2}{3}}}{3} \frac{1}{c^{3}}+\frac{1}{c^{4}}\right) .
\end{aligned}
$$

Show that therefore, $\lim _{c \rightarrow+\infty} 2 \pi \int_{1}^{c} \frac{1}{x^{5}} \sqrt{x^{6}+4} d x<2 \pi\left(2+\frac{1}{2^{\frac{2}{3}}}+\frac{2^{\frac{2}{3}}}{3}\right)<20$. So the surface area of this region of infinite extent is finite. (The bound 20 can be improved by a more careful analysis to around 8.)

