Quiz

Name

1. Suppose that Mars in its orbit around the Sun S reached its perihelion position exactly $t=200$ days ago. This assumption establishes the day as the basic unit of time. Angles are specified in radians. Use the data of the table below, work with 4 decimal accuracy, and include four decimal places in your answers.
a. Compute β_{1}.
b. Determine the angle $\beta(t)$ by finding the stable value β_{i} that the approximation scheme $\beta_{i+1}=$ $\frac{2 \pi t}{T}+\varepsilon \sin \left(\beta_{i}\right)$ converges to.
c. Compute the corresponding angle $\alpha(t)$ and find the distance $r(t)$ in km. Locate the position of Mars on the ellipse below. (Note that Mars's orbit is more circular than depicted in the figure.)

d. What is the velocity $v(t)$ of Mars in $\mathrm{km} / \mathrm{sec}$ at that time?

Orbital Data of Planets					
Planet	semimajor axis in million $\mathrm{km}^{(1)}$	period of the orbit in years $^{(2)}$	eccentricity	angle of orbital plane to Earth's	average speed in $\mathrm{km}^{\left(\mathrm{sec}^{(3)}\right.}$
Mercury	57.9092	0.2408	0.2056	7.00°	47.36
Venus	108.2095	0.6152	0.0068	3.39°	35.02
Earth	149.5983	1.0000	0.0167	0.00°	29.78
Mars	227.9438	1.8809	0.0934	1.85°	24.08
Jupiter	778.3408	11.8622	0.0484	1.31°	13.06
Saturn	1426.6664	29.4577	0.0557	2.49°	9.64
Uranus	2870.6582	29.4577	0.0557	2.49°	6.87
Neptune	4498.3964	29.4577	0.0557	2.49°	5.44

1) If the interest is in au, use the conversion $1 \mathrm{au}=149,597,892 \mathrm{~km}$.
2) If the interest is in Earth days, use the conversion 1 year $=365.259636$ Earth days.
3) There are $(24)(60)(60)=86,400$ seconds.

Some relevant Formulas:

$$
\begin{aligned}
& b=\sqrt{a^{2}-c^{2}} \quad \varepsilon=\frac{c}{a} \quad \text { Area }=a b \pi \quad \kappa=\frac{A_{t}}{t} \\
& x=r \cos \theta, \quad y=r \sin \theta, \quad \tan \alpha=\frac{b \sin \beta}{a(\cos \beta-\varepsilon)} \\
& r(t)=a(1-\varepsilon \cos \beta(t)), \tan \frac{\alpha(t)}{2}=\sqrt{\frac{1+\varepsilon}{1-\varepsilon}} \tan \frac{\beta(t)}{2} \\
& \beta(t)-\varepsilon \sin \beta(t)=\frac{2 \pi t}{T}, \quad \beta_{1}=\frac{2 \pi t}{T}, \quad \beta_{i+1}=\frac{2 \pi t}{T}+\varepsilon \sin \left(\beta_{i}\right), \quad\left|\beta-\beta_{i}\right| \leq \varepsilon^{i} \\
& v(t)=\frac{2 \pi a}{T} \sqrt{\frac{2 a}{r(t)}-1}
\end{aligned}
$$

