1. The figure below shows a polar coordinate system. Place the points that have polar coordinates ($5,-\frac{5 \pi}{6}$) and $\left(-4, \frac{\pi}{4}\right)$ carefully into the plane of the coordinate system.

2. A sphere with radius 5 centimeters and mass 10 kilograms has fallen from rest from an unspecified (but considerable) height. The fact that its fall is slowed by air resistance implies that it has a terminal speed. Compute this terminal speed (using equalities below).

Equalities: air density $=1.225 \mathrm{~kg} / \mathrm{m}^{3}$ (in MKS) gravitational constant $=9.81 \mathrm{~m} / \mathrm{sec}^{2}$ (in MKS) $s_{\infty}=\sqrt{\frac{4 m g}{\rho A}} \quad s(t)=|v(t)|=\frac{s_{\infty}\left(e^{\frac{2 g}{s_{\infty}} t}-1\right)}{e^{\frac{2 g}{s_{\infty}} t}+1} \quad c(t)=e^{\frac{2 g}{s_{\infty}} t} \quad y(t)=s_{\infty} t-\frac{2 s_{\infty}}{a} \ln \left(e^{a t}+1\right)+C$

