1. Compute the product (3-2i)(2+5i) and put it into the form a+bi. **2.** Draw a polar coordinate system and locate a complex number c in the complex plane that satisfies $c^4 = -1$. Then write it in the form a + bi for specific a and b. **3.** Find the general solution of the equation 4y'' - 3y' + 5y = 0. Formulas: $e^{i\theta} = \cos \theta + i \sin \theta$; $y = D_1 e^{r_1 x} + D_2 e^{r_2 x}$, $y = D_1 e^{r_2 x} + D_2 x e^{r_2 x}$, and $y = e^{ax} (D_1 \cos bx + D_2 \sin bx)$, where D_1 and D_2 are real constants.