Quiz

Name

1. Use the polar function $r=f(\theta)=\frac{1}{\sin \theta}$ and its graph to evaluate the integral $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{5}{\sin ^{2} \theta} d \theta$. Illustrate the meaning of the integral on in the polar plane below.

2. In the context of Problem 1 evaluate the integral $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sqrt{f(\theta)^{2}+f^{\prime}(\theta)^{2}} d \theta$. Illustrate the meaning of this integral on in the polar plane below.

3. Consider the equiangular spiral in the polar plane given by $r=f(\theta)=e^{\theta}$ with $\theta \geq 0$. Consider the first two complete revolutions of the spiral and compute the total length, first "on the nose", then by providing a numerical estimate.
