Quiz

Name

1. Consider the polar function $r=f(\theta)=2 e^{\theta}$. Show that it its graph is an equiangular spiral by computing the angle α for this function. Use the approximations $2 e^{-2 \pi} \approx 0.0035,2 e^{-\pi} \approx 0.1$, $2 e^{-\frac{\pi}{2}} \approx 0.4,2 e^{\frac{\pi}{4}} \approx 4.2$, and $2 e^{\frac{\pi}{2}} \approx 9.6$ to sketch a careful graph of $r=f(\theta)=2 e^{\theta}$ over $-2 \pi \leq \theta \leq \frac{\pi}{2}$ on the polar coordinate system provided.

2. Determine the length of the graph that you sketched above.

Formulas: $f^{\prime}(\theta)=f(\theta) \cdot \tan \left(\alpha-\frac{\pi}{2}\right) \quad L=\int_{a}^{b} \sqrt{f(\theta)^{2}+f^{\prime}(\theta)^{2}} d \theta \quad A=\int_{a}^{b} \frac{1}{2} f(\theta)^{2} d \theta$

