1a. Consider the general equiangular spiral $r=f(\theta)=f(0) e^{\tan \left(\alpha-\frac{\pi}{2}\right) \theta}$. What values for $f(0)$ and α tell us that the function $f(\theta)=e^{\theta}$ is an equiangular spiral?

1b. Use the estimates $e^{\frac{\pi}{2}} \approx 4.81$ and $e^{\pi} \approx 23.14$ to sketch the graph of the spiral $f(\theta)=e^{\theta}$ from $\theta=0$ to $\theta=\pi$ in the coordinate plane below.
2. Compute the length of the spiral that you have drawn as well as the area enclosed by that part of the spiral and the lines $\theta=0$ and $\theta=\pi$. [By all means leave e and π in your final answers.]

