Name

The diagram below shows an x-y-coordinate system with a polar coordinate system superimposed. The trajectory of a planet P is shown, and the origin O is also the center of force S. Put P (at elapsed time t) in typical position into the diagram. Place the corresponding $x(t), y(t), r(t), \theta(t)$ and F(t) into the diagram.

You are given that $\frac{d}{dt}(r^2\frac{d\theta}{dt}) = 2r\frac{dr}{dt} \cdot \frac{d\theta}{dt} + r^2 \cdot \frac{d^2\theta}{dt^2} = 0$. Starting with $\frac{dx}{dt} = \frac{dr}{dt}\cos\theta - r\sin\theta \cdot \frac{d\theta}{dt}$, verify that $\frac{d^2x}{dt^2} = \cos\theta \left[\frac{d^2r}{dt^2} - r \cdot \left(\frac{d\theta}{dt}\right)^2\right]$. This equation and the analogous equation $\frac{d^2y}{dt^2} = \sin\theta \left[\frac{d^2r}{dt^2} - r \cdot \left(\frac{d\theta}{dt}\right)^2\right]$ are the key ingredients in the verification of the polar force equation $F(t) = m \left[\frac{4\kappa^2}{r(t)^3} - \frac{d^2r}{dt^2}\right]$.

Quiz

Formulas and Facts:

Formulae: $F_P = C_P m \frac{1}{r^2}$ $M = \frac{4\pi^2 a^3}{GT^2}$ $\frac{d}{dx} a^x = \ln a \cdot a^x$ $\log_a x = \frac{1}{\ln a} \cdot \ln x$ $A = \int_{\alpha}^{\beta} \frac{1}{2} f(\theta)^2 d\theta$ $r(t)^2 \cdot \theta'(t) = c$ $x \cdot \frac{dy}{dt} - y \cdot \frac{dx}{dt}$ $2\frac{dr}{dt} \cdot \frac{d\theta}{dt} + r \cdot \frac{d^2\theta}{dt^2}$ $\frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1-x^2}}$ $\frac{d}{dx} \tan^{-1} x = \frac{1}{x^2+1}$ length of a graph $= \int_a^b \sqrt{1+f'(x)^2} dx$