Quiz

Name
The diagram below shows an x - y-coordinate system with a polar coordinate system superimposed. The trajectory of a planet P is shown, and the origin O is also the center of force S. Put P (at elapsed time t) in typical position into the diagram. Place the corresponding $x(t), y(t), r(t), \theta(t)$ and $F(t)$ into the diagram.

You are given that $\frac{d}{d t}\left(r^{2} \frac{d \theta}{d t}\right)=2 r \frac{d r}{d t} \cdot \frac{d \theta}{d t}+r^{2} \cdot \frac{d^{2} \theta}{d t^{2}}=0$. Starting with $\frac{d x}{d t}=\frac{d r}{d t} \cos \theta-r \sin \theta \cdot \frac{d \theta}{d t}$, verify that $\frac{d^{2} x}{d t^{2}}=\cos \theta\left[\frac{d^{2} r}{d t^{2}}-r \cdot\left(\frac{d \theta}{d t}\right)^{2}\right]$. This equation and the analogous equation $\frac{d^{2} y}{d t^{2}}=\sin \theta\left[\frac{d^{2} r}{d t^{2}}-r \cdot\left(\frac{d \theta}{d t}\right)^{2}\right]$ are the key ingredients in the verification of the polar force equation $F(t)=m\left[\frac{4 \kappa^{2}}{r(t)^{3}}-\frac{d^{2} r}{d t^{2}}\right]$.

Formulas and Facts:

Formulae: $F_{P}=C_{P} m \frac{1}{r^{2}} \quad M=\frac{4 \pi^{2} a^{3}}{G T^{2}} \quad \frac{d}{d x} a^{x}=\ln a \cdot a^{x}$
$\log _{a} x=\frac{1}{\ln a} \cdot \ln x \quad A=\int_{\alpha}^{\beta} \frac{1}{2} f(\theta)^{2} d \theta$
$r(t)^{2} \cdot \theta^{\prime}(t)=c$
$x \cdot \frac{d y}{d t}-y \cdot \frac{d x}{d t} \quad 2 \frac{d r}{d t} \cdot \frac{d \theta}{d t}+r \cdot \frac{d^{2} \theta}{d t^{2}}$
$\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}} \quad \frac{d}{d x} \tan ^{-1} x=\frac{1}{x^{2}+1}$
length of a graph $=\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x$

