1. Consider the polar function $f(\theta)=\frac{2}{1+\frac{1}{3} \cos \theta}$. Because $\frac{1}{3}<1$, its graph is an ellipse. Find its semimajor and semiminor axes, determine the "box" of the ellipse, and draw a careful graph of the ellipse into the coordinate plane below.

2. In the context of Problem 1 compute $\sqrt{f(\theta)^{2}+f^{\prime}(\theta)^{2}}$ and explain the meaning of the integral $\int_{0}^{2 \pi} \sqrt{f(\theta)^{2}+f^{\prime}(\theta)^{2}} d \theta$.
3. Use information from Problem 1 to provide a rough estimate for the integral in Problem 2.

Formulas: $a=\frac{d}{1-\varepsilon^{2}} \quad b=\frac{d}{\sqrt{1-\varepsilon^{2}}} \quad a=\frac{d}{\varepsilon^{2}-1} \quad b=\frac{d}{\sqrt{\varepsilon^{2}-1}}$

