Quiz

Name

1. Consider an *x*-*y* and a polar coordinate system simultaneously (with the polar coordinate system being *O* and the positive *x*-axis). Show that the graph of the function $r = f(\theta) = \frac{2}{\cos \theta + 2\sin \theta}$ is a line by converting the equation $r = \frac{2}{\cos \theta + 2\sin \theta}$ to Cartesian coordinates. Plot the points on the graph of $r = f(\theta) = \frac{2}{\cos \theta + 2\sin \theta}$ for $\theta = 0$ and $\theta = \frac{\pi}{2}$. Sketch the line in the space provided.

2. Use the graph above (rather than an attempt to find and anti-derivative) to evaluate the integral $\int_{0}^{\frac{\pi}{2}} \frac{1}{2} \frac{2^{2}}{(\cos\theta+2\sin\theta)^{2}} d\theta = \int_{0}^{\frac{\pi}{2}} \frac{2}{(\cos\theta+2\sin\theta)^{2}} d\theta.$

Formulas:
$$L = \int_{a}^{b} \sqrt{f(\theta)^{2} + f'(\theta)^{2}} d\theta$$
 and $A = \int_{a}^{b} \frac{1}{2} f(\theta)^{2} d\theta$