Quiz

Name

1. Consider an $x-y$ and a polar coordinate system simultaneously (with the polar coordinate system being O and the positive x-axis). Show that the graph of the function $r=f(\theta)=\frac{2}{\cos \theta+2 \sin \theta}$ is a line by converting the equation $r=\frac{2}{\cos \theta+2 \sin \theta}$ to Cartesian coordinates. Plot the points on the graph of $r=f(\theta)=\frac{2}{\cos \theta+2 \sin \theta}$ for $\theta=0$ and $\theta=\frac{\pi}{2}$. Sketch the line in the space provided.

2. Use the graph above (rather than an attempt to find and anti-derivative) to evaluate the integral $\int_{0}^{\frac{\pi}{2}} \frac{1}{2} \frac{2^{2}}{(\cos \theta+2 \sin \theta)^{2}} d \theta=\int_{0}^{\frac{\pi}{2}} \frac{2}{(\cos \theta+2 \sin \theta)^{2}} d \theta$.

Formulas: $L=\int_{a}^{b} \sqrt{f(\theta)^{2}+f^{\prime}(\theta)^{2}} d \theta \quad$ and $\quad A=\int_{a}^{b} \frac{1}{2} f(\theta)^{2} d \theta$

