1. Consider a polar and $x y$-coordinate system simultaneously. The graph of the polar function $r=f(\theta)=\frac{3}{1+\frac{1}{2} \cos \theta}$ is an ellipse. The Cartesian coordinates of the two focal points are
$\qquad$
$\qquad$ . A Cartesian equation of the ellipse is $\qquad$
and the area of the ellipse is $\qquad$
2. The figure below shows a polar coordinate system and the circle $r=2 \pi$. Consider the polar function $r=f(\theta)=\theta$ for $0 \leq \theta \leq 2 \pi$.

i. The graph of $r=f(\theta)$ lies inside the circle. Plot six different points of the spiral and then sketch it carefully into the space provided.
ii. Compute the area between the spiral and the circle.
