Quiz

Name

1. Copernicus spent many hours at dusk on cloudless days looking at the sky from his vantage point E in the city of Torun in Poland. Each time, the Sun S had just descended below the horizon and the planet Mercury M was visible as a faint point of light. He could measure the angle $\angle M E S$ and he did so again and again at different times of the year. The largest value that he obtained for this angle was 23°. What could he deduce from this measurement about the distance $S M$?
i. Draw a "birds-eye" view of the triangle $\triangle M E S$ along with a part of the orbit of Mercury at the moment Copernicus made the measurement of 23°.
ii. Discuss what Copernicus could conclude about the distance $S M$?
2. In the figure below O and P are fixed points that are a distance d apart. The point E_{1} lies on a circle with center O. The angles α_{1} and β_{1} are determined by the position of E_{1}. What condition must the angles α_{2} and β_{2} satisfy so that E_{2} lies on the same circle. (The answer is the essence of Kepler's correction of Copernicus's study of Earth's orbit.)

