1. Let $y=f(x)$ be a function defined over an interval $a \leq x \leq b$. Describe (in mathematical notation) the process that provides the meaning of the definite integral $\int_{a}^{b} f(x) d x$ by interpreting it as a sum of n terms where n is a huge number. (Do so "in the abstract" without making use of graphs, or rectangles, and without mentioning areas or the fundamental theorem of calculus.)
2. Approximate $\int_{0}^{6}\left(40-x^{2}\right) d x$ by carrying out this process with the small number $n=6$. Use the Fundamental Theorem of Calculus to determine the precise value. Sketch the graph of the function involved.
