1a. In the diagram below, the points A, B, C, and D lie on a straight line and the distance between A and B is equal to the distance between C and D. Use the diagram to explain why the areas of the triangles $\triangle A B S$ and $\triangle C D S$ are equal.

1b. Suppose that a point mass P of mass m moves along a straight line with constant speed. Let S be any point not on the line. Show that the segment $P S$ sweeps out equal areas in equal times.
2. The figure below considers a planet in position P at the "top" of its elliptical orbit and again at a time Δt later at Q. The point C is the center of the ellipse. For a small $\Delta t, P Q$ is approximately equal to $P Q^{\prime}$ and the area of the elliptical sector $S P Q$ is approximately equal to the area of the triangle $S P Q^{\prime}$.

a) Let $\Delta s=Q^{\prime} P$. Determine an expression involving Kepler's constant κ and the semiminor axis of the ellipse that approximates the average speed $\frac{\Delta s}{\Delta t}$ of the planet from P to Q.
b) Use the fact that $\kappa=\frac{a b \pi}{T}$ and push Δt to zero to show that the speed of the planet at P is equal to $v_{P}=\frac{2 \pi a}{T}$.

Formulas and Data: $A=a b \pi, \quad a^{2}=b^{2}+c^{2}, \quad \varepsilon=\frac{c}{a}, \quad F=m a, \quad \kappa=\frac{A_{t}}{t}, \quad M=\frac{4 \pi^{2} a^{3}}{G T^{2}}$, $G=6.673 \times 10^{-11}$ in M.K.S., $\quad F=G \frac{m M}{r^{2}}, \quad F=\frac{4 \pi^{2} a^{3} m}{T^{2}} \frac{1}{r_{P}^{2}}, \quad \frac{a^{3}}{T^{2}}=\frac{G M}{4 \pi^{2}}$,

