Quiz

Name

1. A function $f(x)$ with the following properties is given: $f(x)$ is differentiable for all x and $f(x)>0$ for all x. Let $x>0$ be arbitrary and consider the rectangle that has the interval $[0, x]$ as one side and the segment from $(x, 0)$ to $(x, f(x))$ as another. In the space below, draw: an $x-y$ coordinate system, the graph of one such function, and one rectangle that satisfies the stated conditions.
2. Express the area of the rectangle as a function of x.
3. Suppose that the rectangle has the largest area that such a rectangle can have when $x=c$. Show that the diagonal of the rectangle from $(0, f(c))$ to $(c, 0)$ is parallel to the tangent to the graph of $f(x)$ at the point $(c, f(c))$.
