Quiz

Name

1. A culture of bacteria is being studied in a lab in a situation of exponential growth. At time $t=0$, there are 5,000 bacteria in the culture. At time $t=2$ hours, the number has increased to 8,000 . Find the growth constant μ of the culture and a formula that provides an approximation of the number of bacteria at any time $t \geq 0$.
2. Another culture of bacteria is being studied under laboratory conditions, again during its exponential growth phase. At time $t=0$, there are 7000 bacteria in the culture. At time $t=1$ hour, the number of bacteria is seen to increase at a rate of 10,500 bacteria per hour. Find the growth constant μ of the culture and a formula that approximates the number of bacteria at any time $t \geq 0$. [You will discover that the solution x of the equality $\frac{3}{2 x}=e^{x}$ is relevant. Sketch graphs that demonstrate that the solution x is unique. Why is it the case that $0<x<1$? Experiment with a calculator to approximate x.]
