Quiz

Name

1. A weight W is suspended on a cable as shown in the figure (with $A B$ horizontal). Let T_{1} and T_{2} be the tensions in the cable segments $A C$ and $C B$ respectively. Assuming that the system is in equilibrium, draw a force diagram at the point C and use it to determine (explain your reasoning along the way) two equations that relate T_{1}, T_{2}, and the angles α and β. Extra credit: Under the assumption that W is attached at C with a pulley wheel that can rotate freely, show that $\alpha=\beta$.

2. A cable car weighing 2000 pounds has come to a stop during its trip to the top of a mountain. It is suspended from the weight bearing cable by a single pulley wheel. The part of the cable from the pulley wheel toward the peak makes an angle of 40° with the horizontal and the part from the pulley wheel downward makes an angle of 37° with the horizontal. Draw a diagram that illustrates the various forces.

Compute the tensions in the cable both below and above the cable car.

