Quiz

Name
Consider the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$ with semimajor axis a, semiminor axis b and eccentricity $\varepsilon=\frac{c}{a}$ where $c=\sqrt{a^{2}-b^{2}}$.

1. Show that the upper half of the ellipse is the graph of the function $f(x)=\frac{b}{a}\left(a^{2}-x^{2}\right)^{\frac{1}{2}}$.
2. Show that the definite integral for the surface area S of the solid obtained by revolving of upper half of the ellipse once around the x-axis is equal to

$$
S=2 \pi \int_{-a}^{a} f(x) \sqrt{1+f^{\prime}(x)^{2}} d x=\frac{2 \pi b}{a} \int_{-a}^{a} \sqrt{a^{2}-\varepsilon^{2} x^{2}} d x
$$

3. Assume that $\varepsilon \neq 0$ (what happens if $\varepsilon=0$?). Use the substitution $x=\frac{a}{\varepsilon} \sin \theta$ with $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$ and the formula $\cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta)$ to show that

$$
\int_{-a}^{a} \sqrt{a^{2}-\varepsilon^{2} x^{2}} d x=\varepsilon \int_{-a}^{a} \sqrt{\left(\frac{a}{\varepsilon}\right)^{2}-x^{2}} d x=\frac{a^{2}}{\varepsilon} \int_{-\alpha}^{\alpha} \cos ^{2} \theta d \theta=\frac{a^{2}}{2 \varepsilon}(2 \alpha+\sin 2 \alpha)
$$

where $\alpha=\sin ^{-1} \varepsilon$. (To see that the lower limit is $-\alpha$ use the fact that $\sin ^{-1}(-\varepsilon)=$ $-\sin ^{-1} \varepsilon=-\alpha$. This follows from the trig formula $\sin (-\theta)=-\sin \theta$ and the function/inverse relationship of Section 9.9.)
4. Take $a=5$ and $b=4$. So $c=3$ and $\varepsilon=0.6$. Use a calculator to show that in this case, the surface area S is approximately equal to 235.31 . Assess the reasonableness of this answer by computing the area of the surface of the cylinder-without the two discs at its ends-of height $2 a=10$ and radius $b=4$ that contains the elliptical solid.)

