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Abstract-In this paper, an easily verifiable, necessary and
sufficient condition is derived for stability of arbitrarily switched
systems with two stable second order linear time-invariant
subsystems.

I. INTRODUCTION

The stability issues of switched systems, especially switched
linear systems, have attracted considerable interest in the recent
decade, see for example the survey papers [1],[2], the recent
book [3] and the references cited therein. It is known that
the stability of switched systems depends on not only the
dynamics of the subsystems but also the properties of the
switching signals. One of the basic problems for switched
systems is to identify conditions that guarantee the stability
of a switched system under all possible switching signals, or
arbitrary switching. A popular way to deal with this problem is
based on finding a common Lyapunov function. This approach
is justified by the converse Lyapunov theorem proposed in [4]
for arbitrary switching systems. However, most existing efforts,
e.g. [5], [6], are based on or imply the existence of a common
quadratic Lyapunov function (CQLF), which is known to be
sufficient only. Therefore, the study of non-quadratic Lyapunov
functions has been attracting more and more attentions, e.g.
[7]. Nevertheless, these non-quadratic Lyapunov functions are
not easy to determine in general.

In this paper, we aim to identify a necessary and sufficient
condition for the stability of switched systems under arbitrary
switching. In particular, we consider the following switched
systems with a pair of second-order continuous-time LTI
subsystems:

S ±j: oo7x, x (i {Ai,B} (1)

where both Ai and Bj are Hurwitz, and i, j E {1, 2, 3}
denote the types of A and B respectively. We classify a matrix
A E RIL2 2into three types according to its eigenvalue and
eigenstructure. Type I: A has real eigenvalues and diagonal-
izable; Type II: A has real eigenvalues but undiagonalizable;
Type III: A has two complex eigenvalues.

The argument here is based on the characterization of the
most unstable switching signal for the switched systems. The
idea is very simple: if the switched system remains stable under
the most "unstable" switching signal, then the switched system
must be stable for all possible switching signals. Similar
idea has been used in [8] to derive a verifiable necessary
and sufficient condition for absolute stability of second-order
systems. However, the condition proposed in [8] can not be

applied to general cases of second order subsystems and the
checking of this condition is not straightforward. In this paper,
we characterize the worst case switching signal by analyzing
system trajectory in polar coordinates and use it to derive an
easily verifiable, necessary and sufficient condition.
The rest of the paper is organized as follows. In Section

II, the trajectories of the switched system are analyzed under
the polar coordinates. In Section III, the worst case switching
signal is characterized. In section IV, the main result and its
proofs are given. And the final section concludes the paper.

II. POLAR COORDINATES PRESENTATION

Consider a second-order LTI system

(2)~ Ax Fall a12
a21 a22

and define xi rcosO, X2 rsinO, it follows that

dr
= r[all cos2 0 + a22 sin2 0 + (aI2 + a21) sinOcosO] (3)

dt

dt a2l cos2 0-ai2 sin2 0 +(a22-ajj)sin0cos0 (4)

dt

dr
dO

all cos2 0 + a22 sin2 0 + (al2 + a2l) sin 0 cos 0

a2l cos2 0- a12 sin2 0 + (a22- a,) sin 0 cos 0

Denote

f (0) all cos2 0 + a22 sin2 0 + (a12 + a2l) sin 0 cos 0 (6)
a2l cos2 0- a12 sin2 0 + (a22 -all) sin 0 cos 0

we have
1
dr f(0)dO (7)

Lemma 2.1: The trajectories of system (2) in r-0 coordi-
nates, except the ones lie on the eigenvectors, can be expressed
as

r(t) = C exp ( f (0(t))dO) A Cu(0(t)) (8)

where C is a positive constant depending on initial state
(ro, 00) and u(0) is positive definite.

'The case that do = 0 happens when the trajectory stays along an
eigenvector corresponding to a real eigenvalue, which will be dealt with
separately later.
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Equation (8) can be readily shown by integrating both sides
of (7). In addition, we are to obtain expression of u(0). It
follows from (6) that

f (0) (all -a22) cos20 + (a12 + a2l) sin 20 + (all + a22)
(a12 + a2l) cos 20 -(a -a22) sin 20 + (a2l- a12)

(9)
Denote m =V/(all a22)2 + (a12 + a2l)2. If m = , we
have f(0) a,, + a22 and

r Cexp all+a220
a2l- a12

(10)

If m 74 O, denote cosyo= (a12 + a2l)/m, sinyo= (all-
a22)/m, p (a2l -al2)/m and q (all + a22)/m. Hence,
(7) becomes

1d sin(20 + (o) + q
r cos(20 +yo) + p

1) A has two distinct real eigenvalues: lpl < 1
qh

r = Cu tg(O + g+ h 2(p+1)

where ui (0) cos(20 + o) +p 2 and h 1.

2) A has two multiple real eigenvalues: lpl 1

(a) A system with real eigenvalues

(1 1)

r Cu1(0) exp [tg(0-+2)] p 1

r Cu1(0) exp ctg(0+ '), p 1

3) A has a pair of complex eigenvalues: pl > 1
Denote 0 0 + nw, U C [-2 '2), it follows that

u(0) u(0+ nw) v(n)u( 0)
where v(n) exp (hn) and

ui(0) u1(0) exp { tg tg( + 1LhI)] }
Comment 1: When A has real eigenvalues, u(0) is a periodic

function of 0 with a period of w; When A has complex
eigenvalues, u(0) consists of a periodic part ui(0) and a
piecewise constant part v(n). It implies that all the trajectories
for n 74 0 is just a scaling of the trajectories when n 0. With
reference to Fig. 1, the behaviors of the trajectory starting from
the state b is the same as that from the state a with a phase
shift of w. Therefore, it is sufficient to analyze stability of a
system with complex eigenvalues, as well as real eigenvalues,
in a interval of 0 C [00, 00 + w) for any 00. Without loss of
generality, we can assume So =
Comment 2: Geometrically, a larger C indicates an outer

layer curve. For any given initial state, if no switching happens,
the trajectory of the system will follow one of the curves
(C remains constant), which is determined by the initial
state, and converge to the origin for asymptotically stable
system. Intuitively, if we can bring the state to outer layers,
equivalently increase C, then it may be possible to make the
system unstable.
Now, we proceed to analyze the switched system (1) and

investigate how to orchestrate between these two subsystems

(b) A system with complex eigenvalues

Fig. 1. Phase diagrams of planar systems in polar coordinates.

to generate the most 'unstable' trajectory. The basic idea is to
increase the value of C as much as possible at each switching.
Denote the two subsystems of (1) as:

YA: AX F al a12] (12)
a21 a22

EB Bx [b21 b22 ]X (13)

Follow the definition of f(0) in equation (5), we define
fA (0) and fB (0) for subsystems A and B respectively.

all cos2 0+ a22 sin2 0 + (a12 + a2l) sin 0 cos 0

fA(O) a2l cos2 0-a12 sin20 + (a22- a,) sin0cos0

bil cos2 0 + b22 sin2 0 + (b12 + b2l) sin 0 cos 0

fB(O) b2l cos2 0-b12 sin2 0 + (b22- bi) sin 0cos 0

It follows from Lemma 2.1 that

r CAexp (fA(0)dO)

r CB exp (fB(0)dO)

CAUA(0)

CBUB(O)

(14)

(15)

Combine (14) and (15), we obtain the piecewise solution of
the switched system (1)

{ CAUA(O), when of = A

CBUB(O), when ou = B
(16)
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Fig. 2. The variations of hA under switching

where
dCA _ rs dCB _ rs

dt dt
= u (l /)

For any state (r, 0) in the phase plane, it can be described
by either (14) or (15)

r = CAUA(O)= CBUB(O) (18)

Hence, a solution of the switched system can be represented
in a compact way as

r = hA(0)UA(0) (19)

stability. Similarly, we can prove the case when HB is non-
positive.

Although the existence of positive HA and HB are neces-
sary, it is not sufficient for divergence of the switched systems.
Hence a comprehensive analysis is needed.

III. WORST CASE SWITCHING SIGNAL

In this section, based on the signs of HA and HB, we
_~ establish a criterion to evaluate which subsystem is worse.

By choosing the worse subsystem for each 0, we are able
to find a worst case switching signal (WCSS) for switched
systems. Then the stability problem under arbitrary switching
is transformed to the stability problem under WCSS.

First, we find the expressions of HA(0) and HB(0). It
follows from equation (20) and (23) that

HA(0) dht CB((0))dt 7B U 0

_CB UB (0) ~ dO
(0)[fA(0) fB(0)] dt

In (24), CB is a constant since of B. Similarly, we have

HB(0)= CAU (0) [fA(0) - fB(0)] dt (

Denote

24)

25)

where

or similarly

where

hA(0) ={ CA UB(0)
UA(O) '

A
B (20)

(21)r hB (O)UB(0)

hB(0) { CA UA (0) 7UUB(O)
CB, UT

=A
-B

(22)

For convenience, we denote

HA(0(t)) A dhA B,HB ( (t)) A dhB A (23)

Equation (19) indicates even when the actual trajectory follows
EB, we still describe the trajectory by the function of YA with
a varying hA. Then, we can use the variations of hA to describe
the behavior of the switched system, as shown in Fig.2.

Since UA (0) converges to zero for a Hurwitz A, the only
way to make r diverge to infinity is increasing hA, which
can only be done by EB. Geometrically, the positive HA (the
increase of hA) means that YEB helps YA to bring states to
the outer trajectories of YEA, which is necessary to make the
system unstable.
Lemma 2.2: Switched systems (1) are stable if one of HA

and HB is non-positive for all 0.
Proof: We consider the case when the switching does not

stop. (If the switching stops, the switched system must be
stable since both subsystems are stable.) If HA is non-positive
for all 0, then hA is bounded. Furthermore, UA(() is bounded
for stable EA, it follows from the equation (19) that the
magnitude r of the switched system is bounded. Since the
switched linear system under arbitrary switching is still a
linear system, boundedness of the state implies the Lyapunov

KA(0) CB ,(0) KB(0)UtA(0)'
CWA(0)

UB(0)
P(0) fA(0) -fB(0)

QAo0 dO ,QB(0) dO
AdtA dt o=B

then (24) and (25) become

HA(O)= -KB(O)P(O)QB(O)
HB(0)= KA(O)P(O)QA(O)

(26)

(27)

In (26) and (27), since both KA(0), KB5(0) are positive defi-
nite, P(0) is the same, it follows that

1) If the signs of QA and QB are the same, then the signs
of HA and HB are opposite.

2) If the signs of QA and QB are opposite, then the signs
of HA and HB are the same.

The geometrical meaning of the signs of QA and QB is the
trajectory direction. A positive QA implies a counter clockwise
trajectory of YA in x-y coordinates.

Since the interesting interval of 0 is [-T,2), we denote
k tg0, then all above functions of 0 can be transformed
to the functions of k. Straightforward algebraic manipulation
yields

1
QA(k) -k2 + DA(k)

QB(k) -k2 +DB (k)

HA (k) N (k)H KA()DA(k)

HB(k) -KA(k) N(k)
DB(k)

(28)

(29)

(30)

(31)
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Fig. 3. The region where both HA and HB are positive

where
DA(k) a12k2 + (all- a22)k -a2l

DB(k) bl2k2 + (bl- b22)k -b2I (33)

and
N(k) P2k2 + plk + po (34)

where P2 a12b22 -a22b12, PI a12b2I + a,1b22 -a21b12-
a22b1I and po aIIb2 -a2lb1l.

It shows that the signs of equations (28)-(31) depend on
the signs of DA(k), DB(k) and N(k). Geometrically, if we
describe vectors in x-y plane as [1, k]T, then the vectors
satisfying DA(k) 0 are the eigenvectors of A and similarly
the vectors satisfying DB (k) 0 are the eigenvectors of B. In
addition, if we denote two distinct real solutions of N(k) 0
by k, and k2, and assume k2 < kl, then [1, kl]T and [1, k2]T
are two vectors on which dr of the two subsystems are thedO
same.

Definition 3.1: A region of k is a continuous interval where
the signs of (28)-(31) preserve for all k in the interval.
The boundaries of the regions are the vectors satisfying

DA(k) 0, DB(k) 0 or N(k) 0. These vectors divide
x-y plane to several sectors.
Now we proceed to establish criteria to determine the worse

subsystem for every 0 based on the signs of HA and HB.

A. Both HA and HB are positive
Lemma 3.1: The switched system (1) is unstable if there is

a region of k, [kl, kl], where both HA and HB are positive.
Proof: With reference to Fig.3, define 11 and 12 as the lines

where X2 k,,xl and X2 klxl. Consider an initial state on
12 at to, let trajectory follow YA until it hits 11 at ti and switch
back to YZB until it returns to the line 12 again at t2. Define the
states at to, t, and t2 as (ro, 00), (rI, 01) and (r2, 02) respec-
tively. It follows that rTO CAOUA4(00) CBOUB( Oo.r1 =
CA1UA(01) CBIUB(O1),r2 CA2UA(02) CB2UB(02).

Since HA(k) and HB(k) are both positive, trajectories of
two subsystems have opposite directions. It follows that 02
00 and CA2 > CA1 CAO. It can be shown that the increment
A CA2 -CAO is a positive constant determined by kl, k"
and the entries of A and B. By repeating the switching, we
have

lim r(t) lim r(to+nT) lim CAo(1+A)nu(0O) -- 00
t Oo nfloo nfloo

where T t2 -to and n is the number of switching periods.

Fig. 4. The region where HA is positive and HB is negative

B. HA is positive and HB is negative

The worse subsystem is EB. In this case, two trajectories
have the same directions. With reference to Fig.4, consider an
initial state with an angle 00 at to. Analyzing the magnitudes
of states along different subsystems, we have

Ar(0) rB(O) -rA(O) hA(O)UA(O) -CAUtA(O)

(tHAdt) UA(O) > ° 35

It shows that the trajectories of YB always have a larger
magnitude than the corresponding ones of EA for all 0 in
this region.

C. HA is negative and HB is positive
Similarly, the worse subsystem is EA.

D. Both HA and HB are negative

Based on Lemma 2.2, if the trajectory can not go out of this
region, the system is stable in this region. Therefore, the worst
case is the subsystem whose trajectory is able to go out of this
region. If both trajectories can go out, then no matter which
subsystem is chosen, the trajectories will leave this region and
the stability of the system is not affected.

E. Both HA and HB are zeros
In this case, we can choose either one as the worse case

switching signal.

F On real eigenvectors
It can be readily shown that the worse subsystem is -A if

trajectory is on the eigenvector of B, and vice versa.

IV. MAIN RESULT

In this section, we express the entries of subsystems by
their eigenvalues and eigenvectors. Assumptions are made to
simplify the analysis and to obtain a compact result for system
Sij in (1) with different combinations of i,j.

Without loss of generality, we define the standard form Ji
for different types of second order matrix.

J=
Al

0
] J2 [

A
] ' 3 [1 ;

(36)
where

(37)f 2o< A < OH w < Ot m < a,tx> .

for Hurwitz matrix.
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In system (1), we assume that one of subsystems is in its
standard form Ai Ji, and the other one can be expressed
as Bj QjJjQ 1 with i < j. If Ai and Bj do not share
a real eigenvector (these cases will be proved separately), the
transformation matrix Qj can be taken as

Qi [I a] Q2 [23a a]j'Q [ 1 (38)
There are totally six combinations of Sij in terms of i, j, and
additional assumptions are needed for individual combinations.

1) If Sj S11, 3 < O
2) If Sij S12, a < O
3) If Sij S13, k1, k2 < 0 (if exist)
4) If Sij S33, P2 74 0 (if A 74 B)
5) If Sij S33, P2 < 0 (if N(k) has two distinct real

roots)
Any given switched linear systems (1) can be transformed to
satisfy these assumptions by coordinates transformation when
necessarily while stability properties of the switched system
preserve. The proofs of the feasibility of these assumptions
are presented in the Appendix.

Theorem 4.1: Switched systems (1) is not stable for arbitrary
switching signal if and only if N(k) (34) has two distinct real
roots, k2 < kl, satisfying

N < k2 < k1 < M if det(Qj) < 0

exp(BjTB)exp(AiTA)x(0) 12 > IIX(0)112 if det(Qj) > 0
(39)

where
{ N =cv:,M 0O
N -oo, M +o

Sij SiI
otherwise

(40)

From (37), we have

2a < Ala < O,A < O, > 0
Denote

Ala kAA\2a,

(45)

A-t
w) (46)

it follows that kA C (0,1] and ( < 0. Substitute (43) and (44)
to (32), (33) and (34), it yields that

DA(k) A2a(kA -1)k

DB (k) > [(k-a)2±+ 21

N(k) 3 N(k)

(47)

(48)

(49)

where N(k) is a monic polynomial with the same roots as
N(k)

N(k) k2 [(kA -1)3 + (kA + 1)ao]k + kA(c2 + a3)
(50)

Hence

sgn(HA(k)) sgn(Q3) sgn(N(k)) sgn(k)

sgn(HB (k)) -sgn(N(k))

(51)

(52)

TA fO 1Id
102 a2l COS2 0-ai2 sin2 0 + (a22 -all) sin 0 cos 0

(41)
[02 1 d

B

1 b2l cos2 0 b12 sin2 0 + (b22- bi )sin 0cos 0
(42)

where 01 tg- kl, 02 tg-1k2 and x(0) [1, k2]T.

A. Proof of the special cases

If A and B share a common real eigenvector, then A and
B can be transformed to lower-triangular Hurwitz matrix A
and B simultaneously by a nonsingular matrix whose second
column is the common real eigenvector. It follows that A, B
share a CQLF and the switched system (1) is stable. The result
can also be obtained by Theorem 4.1. Two lower-triangular
Hurwitz matrix leads to P2 0 in (34), which violates the
condition: N(k) has two roots. Therefore, Theorem 4.1 is valid
for these special cases.

B. Proof of Sij S13
In this case, two subsystems are expressed as

A1 [Al A2a (43)

B3 Q3[ At] 33 [
at~-a I
(ca2 +-32) -3c+ aj(44)

sgn(QA (k)) -sgn(k) (53)

sgn(QB (k)) -sgn(Q3) (54)

Based on (51)-(54), we discuss all the possibilities based on
the signs of det(Q) (or d3 equivalently) and root conditions of
N(k).

1) N(k) has no real root or has two multiple roots: In this
case, N(k) is non-negative, as a result, HB is non-positive Vk.
Based on Lemma 2.2, the switched system (1) is stable.

2) N(k) has two roots and det(Q3) < 0: In this case,
~3> 0, HA and HB are both positive Vk C (k2, k1). Based on

Lemma 3.1, the switched system (1) is unstable.
3) N(k) has two roots and det(Q3) > 0: In this case,

a3 < 0, we need to determine the worst case switching signal
(WCSS) for every region of k:

a) k < k2: HA is positive and HB is negative, the WCSS
is EB.

b) k2 < k < kl: HA is negative and HB is positive, the
WCSS is EA.

c) k k1 and k k2: Both HA and HB are zero,
without loss of generality, the WCSS is EA.

d) k1 < k < 0: HA is positive and HB is negative, the
WCSS is EB.

e) k 0: On the real eigenvector of EA, the WCSS is
EB.
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f) k > 0: Both HA and HB are negative, the WCSS is
EB since only trajectory of YZB can go out of this region.
From above analysis, we conclude that the WCSS for all k

is
= A k2< k < ki,

uT B otherwise.
(55)

The simplest way to determine the stability of the system is
to follow the WCSS originating from an initial state on the
the line X2 k2XI until it returns to the same line again.
Then the switched system (1) is not stable if and only if
11exp(B3TB)exp(AlTA)x(0)112 > IIX(0)112' which meet the
second inequality in Theorem 4.1.
Due to space limitation, we only present the proof of the

case Sij S13 as an example of general cases, other cases of
Sij can be proved similarly.

C. An example
Consider a switched linear system with two LTI planar

systems

A=[1 _1 ]: B [1/8 -1 ] (6
This switched system has been proved to be stable under
arbitrary switching although A and B do not share a CQLF in
[4] to show that the existence of CQLF is only sufficient, but
not necessary for stability under arbitrary switching. Now we
check it by applying Theorem 4.1.

1) Step 1: Simple checking yields that both A and B have
a pair of complex eigenvalues:-1 + i. So it is the case S33

and J3 = [ ] is the standard form for both A and

B.
2) Step 2: It is noticed that A is already in its standard

form and the Assumption 4 and 5 for S33 are satisfied since
P2 al2b22 -a22b12 -7. So no further transformations are
needed. Since B and the standard form of B are known, we

can obtain Q =[ _ 8 ] whose structure is defined in

(38).
3) Step 3: Substitute entries of A and B in (56) into (34)

and we have k2 -.01019,k1 1.2269 and det(Q) =
1/8 > 0. Therefore, we need to check the second inequality
to determine the stability of the switched system.

4) Step 4: Substitute (56) to (41) and (42), we obtain TA
TB 0.9885 and

11exp(BTB)exp(ATA)x(0) 112 0.6761 < IX(0) 112 1.0052

Therefore, the switched system is stable which is the same
result as shown in [4].

V. CONCLUSION

In this paper, we analyzed the system trajectories of a
switched planar systems consisting of a pair of stable LTI
subsystems in the polar coordinates, and revealed in which
cases unstable behaviors could be generated through switching.
Based on the signs of HA and HB (23), we characterize the
"worst case switching signal" and use it to derive an easily
verifiable, necessary and sufficient condition to determine the
stability of switched linear systems with two stable planar

subsystems. Future work will consider extending the results
to obtain corresponding results for discrete-time systems.

APPENDIX

Proof of Assumptions

Assumptions 1-3 can be satisfied by the transformation x-=
-xl when necessary.
Assumption 5 can be satisfied by similarity transformation

with a unitary matrix P i' ] when necessary, where

det(P) =+ 1. Since P is unitary and real, P 1

pT. It follows that

A3 = )-IA3p =p: A3P F= all a12 1
a21 a22

where alI= aIIy2 -(al2 + a2l)>Y + a22 a12 a12ly2 +
(all- a22)'yq -a2l12 a2l a2ly2+ (all- a22)'Yq1- a12,
a22 =a22y2 + (al2 + a2l)YT' + all12.

It follows from A3 J3 that all a22 and a12 -a2l,
hence A3 A3. Similarly, we have

B3 P-1B3P PTB3P F bil b12 1

L b21 b22 j

where bil bly'2 -(bl2 + b2I)'Yq+ b22q12, b12 bl2'Y2 +
(bl- b22)}Yq-b2l12, b2l b2ly2 + (bl- b22)}Tq- b12q2,
b22 b22Y}2 + (bl2 + b2I)'Y + b11q2.
Then we have

P2 al2b22 -a22bl2 al2b22- a22bl2

12 ()y +Pl +Po]
(57)

The polynomial inside the bracket in (57) has the same
coefficients as N(k)! If P2 > 0 and N(k) has two roots
k2 < kl, it is always possible to get a negative P2 by a pair
of ('y, q) satisfying k2 < r' < kl.17
By the same way, we can prove the Assumption 4. Accord-

ing to (57), if P2 0 and p2 + p2 + p2 74 0 (A 74 B), it is
easy to find a pair of ('y, qI) to make P2 04 .
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