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Abstract— In this paper, the controllability problem for
multi-agent systems is investigated. In particular, the case of a
single leader under a fixed topology is considered. In contrast
to the existing literature on this topic, we assume that the graph
is weighted and we may freely assign the weights. Under this
setup, the system is controllable if one may find a set of weights
so as to satisfy the classical controllability rank condition. It
turns out that this controllability notation purely depends on
the topology of the communication scheme, and the multi-agent
system is controllable if and only if the graph is connected.
Moreover, some simulation results and numerical examples are
presented to illustrate the approach.

I. INTRODUCTION

Motivated by the recent developments in communica-

tion and computation technologies, distributed control of

networked dynamic agents has rapidly emerged as a hot

research area with strong support from both civilian and

military applications, such as coordinated surveillance, target

acquisition, reconnaissance, underwater or space exploration,

assembling and transportation and rapid emergency response.

Cooperative control of multi-agent systems is still in

its infancy and poses significant theoretical and technical

challenges. Much work has been done on the formation

stabilization and consensus seeking, see e.g., [11], [13],

[3], [16]. To control such a complicated system, a lot of

inspirations has been drawn from natural swarms such as

fish schooling, bees flocking and ant colonies. Approaches

like graph Laplacian for the associated neighborhood graphs,

artificial potential functions, and navigation functions for

distributed formation stabilization with collision avoidance

constraints have been developed.

The key feature of multi-agent systems is that the group

behavior of multiple agents is not simply a summation of

the individual agent’s behavior. Although each individual

agent’s dynamics and their interaction rules could be very

simple, a large collection of these elementary agents, as

a whole, could exhibit remarkable capabilities and display

highly complex behaviors. The main challenge in this area

is how to design these simple local interaction rules and

communication protocols so as to achieve a desirable global

behavior as a coherent group. Here, we will focus on the

controllability problem and aim to investigate what kinds

of communication topology, i.e., the minimum information

exchange among agents, is required to make sure that the

multi-agent system is controllable. Here, the controllability

as a group is the desirable global behavior.
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The controllability problem of multi-agent systems has

been investigated in the literature for a while. Tanner pro-

posed this problem in [15] and formulated it as the control-

lability of a linear system, whose state matrices are induced

from the graph Laplacian matrix. Necessary and sufficient

algebraic conditions on the state matrices were given based

on the well-known linear system theory. Under the same

setup, a sufficient condition was derived in [4] and shown

that the system is controllable if the null space of the

leader set is a subset for the null space of follower set. In

[5], it was shown that a necessary and sufficient condition

for controllability is not sharing any common eigenvalues

between the Laplacian matrix of the follower set and the

Laplacian matrix of the whole topology. However, it remains

elusive on what exactly the graphical meaning of these rank

conditions related to the Laplacian matrix. This motivates

several research activities on illuminating the controllability

of multi-agent systems from a graph theoretical point of view.

For example, a notion of anchored systems was introduced

in [14], and it was shown that symmetry with respect to

the anchored vertices makes the system uncontrollable. In

[7], the authors characterized some necessary conditions for

the controllability problem based on a new notation called

leader-follower connectedness. While [7] was focused on

the case of fixed topology, the corresponding controllability

problem under switching topologies was investigated in [8],

which employed some recent achievements in the switched

system literature.

In contrast to the existing literature, we will consider

weighted graph and focus on the case of a single leader under

a fixed topology. It is assumed that the graph is weighted

and we may freely assign the weighting. Accordingly, a

new notion of controllability, structural controllability, for

the leader-follower based multi-agent system with weighted

topology is introduced. The system is called structurally

controllable if one may find a set of weights such that the

corresponding multi-agent system is controllable in a clas-

sical sense. Based on this notion, a necessary and sufficient

condition for controllability of the multi-agent systems is

proposed and interpreted in a graphic point of view. It turns

out that this controllability notation only depends on the

topology of the communication scheme, and the multi-agent

systems is controllable if and only if the graph is connected.

The rest of the paper is structured as follows. In the next

section, the new notation, structural controllability, for multi-

agent systems is proposed, and the problem studied in this

paper is formulated. In Section III, a necessary and sufficient

condition for the structural controllability problem is given.

Section IVpresents some numerical examples to illustrate the
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derived theoretical results and design methods. Finally, the

paper concludes with comments and plans for our further

work.

II. NOTATIONS AND PROBLEM FORMULATION

A. Notations

A weighted graph is an appropriate representation for the

communication or sensing links among agents because it can

represent both existence and strength of these links among

agents. The weighted graph G with N vertices consists of

a vertex set V = {v1, v2, . . . , vN} and an edge set I =
{e1, e2, . . . , eN}, which is the interconnection links among

the vertices. Each edge in the weighted graph represents a

bidirectional communication or sensing media. The order of

the weighted graph is denoted to be the cardinality of its

vertex set. Similarly, the cardinality of the edge set is defined

as its degree. Two vertices i and j are known to be neighbors

if (i, j) ∈ e, and the number of neighbors for each vertex is

its valency. An alternating sequence of distinct vertices and

edges in the weighted graph is called a path. The weighted

graph is said to be connected if there exists at least one path

between any distinct vertices, and complete if all vertices are

neighbors to each other.

The adjacency matrix, A, is defined as

A(i,j) =

{

wij (i, j) ∈ e,

0 otherwise,

where wij 6= 0 stands for the weight of edge (i, j). Here,

the adjacency matrix A is |V| × |V| and |.| is the cardinality

of a set.

Define another |V| × |V| matrix, D, called degree matrix,

as a diagonal matrix which consists of the degree numbers

of all vertices.

The Laplacian matrix of a graph G, denoted as L(G) ∈
R

|V|×|V| or L for simplicity, is defined as

L(i,j) =







∑

i6=j wij i = j,

−wij (i, j) ∈ e,

0 otherwise.

B. Multi-agent Structural Controllability

Our objective in this paper is to control N agents based on

the leader-follower framework. Specifically, we will consider

the case of a single leader and fixed topology. Without loss

of generality, assume the N -th agent serves as the leader and

take commands and controls from outside operators directly,

while the rest N − 1 agents are followers and take controls

as the nearest neighbor law.

Mathematically, each agent’s dynamics can be seen as a

point mass and follows

ẋi = ui. (1)

The control strategy for driving all follower agents is

ui = −
∑

j∈Ni

wij(xi − xj), (2)

where Ni is the neighbor set of the agent i, and wij is weight

of the edge from agent i to agent j. On the other hand, the

Fig. 1. A complete graph with 6 vertices.

leader’s control signal is not influenced by the followers and

need to be designed, which can be represented as

ẋN = uN .

In other words, the leader affects its nearby agents, but it

does not get directly affected from the followers since it

only accepts the control input form an outside operator. For

simplicity, we will use z to stand for xN in the sequel.

According to the algebraic graph theory [2], it is known

that the whole system can be written in a compact form
[

ẋ

ż

]

=

[

Aaq Baq

0 0

] [

x

z

]

+

[

0
uN

]

. (3)

Or, equivalently
{

ẋ = Aaqx + Baqz

ż = uN
(4)

where Aaq ∈ R
(N−1)×(N−1) and Baq ∈ R

(N−1)×1 are both

sub-matrices of the corresponding graph Laplacian matrix L.

The matrix Aaq reflects the interconnection among followers,

and the column vector Baq represents the relation between

followers and the leader.

The problem is whether we can find a weighting scheme,

i.e., set values for wij , such that it is possible to drive these

agents to any configuration or formation (if the states stand

for the positions of agents) by properly designed control

signals uN for the leader. This is related to the controllability

of the system (4). Once the weights wij are all selected

and fixed, the system (4) is reduced to a LTI system and

its controllability can be directly answered by the well-

developed linear system theory, see e.g. [1]. Actually, a

special case when all weights wij = 1 (an unweighed

graph) has been investigated in the past literature, e.g., [15].

However, Tanner in [15] showed that the complete graph is

uncontrollable as illustrates in the following example.

Example 1: Consider a multi-agent system with six

agents, whose communication topology is a complete graph

with six vertices as shown in Fig. 1. Following the formu-

lation in [15] that the matrices Aaq and Baq in (4) can be

written as
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Aaq =













5 −1 −1 −1 −1
−1 5 −1 −1 −1
−1 −1 5 −1 −1
−1 −1 −1 5 −1
−1 −1 −1 −1 5













, Baq =













−1
−1
−1
−1
−1













.

It is not difficult to see that this pair is uncontrollable.

This is quite counter intuitive, since the complete graph is an

ideal case which provides the maximum information for the

control purpose. It should be the case that more information

exchanges among agents imply better control performances.

The problem seems to be how we use these information. To

treat all available information in an equal way seems not a

good choice. One should use the information in a selective

way. This motivates us to impose different weights according

to the information resources.

With the set-up in (4), a set of weight can be assigned

such that the controllability rank is satisfied; for instance,

the pair (Aaq, Baq) can be written as

Aaq =













7 −2 −2 −2 −1
−2 9 −3 −2 −2
−2 −3 13 −5 −3
−2 −2 −5 11 −2
−1 −2 −3 −2 8













, Baq =













−1
−2
−5
−3
−1













.

One can check that this (Aaq, Baq) pair is controllable.

This example motivates us to give a more general defini-

tion for controllability of multi-agent systems as follows.

Definition 1: The linear system Σ in (4) is said to be

structurally controllable if and only if there exists wij 6= 0
which can make the system (4) controllable.

Here, we are especially interested in a necessary and

sufficient condition on the graphical topology of a multi-

agent system to make it structurally controllable. That is,

under exactly what condition of the graph that we can always

find a weighting scheme wij so as to make the multi-agent

system (4) controllable?

III. STRUCTURAL CONTROLLABILITY

First, a lemma on controllability of (4) when weights are

fixed is due.

Lemma 1: For the system (4) with a fixed weighting wij ,

the following statements are equivalent:

i) The system (4) is controllable.

ii) The controllability matrix

U =
[

Baq AaqBaq . . . AN−2
aq Baq

]

.

is of full row rank.

iii) The controllability grammian

W (t0, tf ) =

∫ tf

t0

eAaqτBaqB
T
aqe

AT
aqτdτ

is nonsingular for all t > 0.

iv) The matrix
[

Aaq − λI Baq

]

has full row rank for all

eigenvalues λ of Aaq .

Fig. 2. Topology G

The above lemma is a direct consequence of the well-

known linear systems theory, see e.g., [1], due to the fact that

the system (4) is reduced to a LTI system once weighting

is fixed; however, for the structural controllability of multi-

agent system we need the following definitions from [10].

Definition 2: The pair (Aaq , Baq) in (4) is said to be

reducible if they can be written in the form below;

Aaq =

[

Aaq11
0

Aaq21
Aaq22

]

, Baq =

[

0
Baq22

]

, (5)

where Aaq11
∈ R

p×p , Aaq21
∈ R

(N−1−p)×p, Aaq22
∈

R
(N−1−p)×(N−1−p) and Baq22

∈ R
(N−1−p).

It was shown in [10] that the controllability matrix for

this structure cannot be of full row rank no matter how

one chooses the weighting wij . Hence, the system (4) is

not structurally controllable under this situation.

Another obviously uncontrollable scenario is captured as

follows.

Lemma 2: [10] The system (4) is not structurally control-

lable if the matrix [Aaq, Baq], which is N − 1 × N matrix,

can be written as

Q =

(

Q11

Q22

)

, (6)

where Q22 is of (N − 1− p)×N and Q11 is of p×N with

at most p−1 nonzero entries and the rest of columns are all

zero.

Interestingly, except these two obviously uncontrollable

scenarios, the system (4) will be structurally controllable as

the following lemma states.

Lemma 3: [10] The pair (Aaq , Baq) is structurally con-

trollable if and only if it is neither reducible nor writable

into the form of (6) in Lemma 2.

Our next task is to interpret the above results in a graph

theory point of view. It has been shown in [2] that the

relation of a pair (Aaq, Baq) can be depicted in a pictorial

representation and the notion of flow structure plays an

important role here. Hence, we introduce some necessary

notations which we need for further discussions in this paper.

Definition 3: The pair (Aaq, Baq) matrix can be repre-

sented by a digraph, defined as a flow structure, FG , with

vertex set V ′ = {v′1, v
′
2, ...v

′
N}. There exists an edge from v′i

to v′j in the flow structure if and only if Aaq(j, i) 6= 0 and

an edge from v′N to v′i if and only if Baq(i) 6= 0.

Remark 1: Directions of links in flow structure has no

dependence on the sign of their corresponding entries in

matrix Aaq .
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Fig. 3. Flow graph

Fig. 4. Stem

For example, the flow structure for the graph shown in

Fig. 2 is depicted in Fig. 3. There are some well known

flow structure that have interesting controllability properties,

such as the flow structure of an ordered vertex set V ′ =
{v′1, v

′
2, ..., v

′
n} with a sequence of edges, where terminal

vertex of each edge is initial vertex of the following edge.

This is known as a stem [10], as depicted in Fig. 4. The cor-

responding state matrices for a stem, denoted as (A∗
aq, B

∗
aq),

can be written as

A∗
aq =















0 ∗ 0 . . . 0

...
. . .

. . .

0 ∗
0 · · · 0















, B∗
aq =















0
0
0
...

*















,

where the symbol ∗ is used to represent the unknown

but nonzero elements that depends on the weighting for

edges. This falls into the controllable canonical form, so the

controllability is obvious for a stem structure.

Another interesting structure grows from a stem. If the

vertex v′n of a stem structure coincides with v′2, the structure

is called a bud [10] and its corresponding flow structure is

shown in Fig. 5. For a bud, the corresponding pair (A∗
aq, B

∗
aq)

can be written as

A∗
aq =















0 ∗ 0 . . . 0

...
. . .

. . .

0 ∗
∗ · · · 0















B∗
aq =















0
0
0
...

*















.

A union of a stem S and and buds Bi, 1 ≤ i ≤ d, is called

a cactus if none of the buds Bi share a common initial vertex

Fig. 5. Bud

Fig. 6. Cacti

in S. A set of mutually disjoint cactus is called a cacti, as

illustrated in Fig. 6.

Based on these notations, we have the following sufficient

condition to characterize the structural controllability of the

multi-agent system (4).

Proposition 1: The multi-agent system (4) is structurally

controllable if its corresponding flow structure can be

spanned by a cacti.

Proof: Suppose that the graph can be spanned by a

union of mutually disjoint cactus Ci, 1 ≤ i ≤ p. Under this

scenario all edges equal to zero except those pertaining with

one cacti. With the help of the permutation matrix, A∗
aq can

be written in form I as

while B∗
aq has the structure in the form;











0
0
...

*











.

Hence, the matrix
[

A∗
aq − λiI B∗

aq

]

has generic full row

rank for all λi, 1 ≤ i ≤ N , which implies the the structural

controllability.

The above result is a direct application of some known

structural controllability results for linear systems in [10]

through the introduction of the flow structure. What does this

imply in the original graph? The following theorem answers

this and provides a nice graphical interpretation.

Theorem 1: The multi-agent system (4) under the commu-

nication topology G is structurally controllable if and only if

G is connected.
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Proof: Necessity: Assume that the graph G is discon-

nected. For simplicity, we will prove by contradiction for

the case that there exists only one disconnected agent. There

are two possibilities: First, this isolated agent is the leader.

Then, Baq is a null vector in this case , and the system

is uncontrollable no matter what the weights are. Secondly,

the isolated agent is one follower. For this case, (A∗
aq, B

∗
aq)

is reducible, which implies uncontrollability. Both cases end

with a contradiction, so the necessity holds.The proof can be

straightforwardly extended to more general cases with more

than one disconnected agents.

Sufficiency: For the sufficiency part, we show that a

connected graph cannot be written either in a reducible form

or in the form of (6). Note that wij 6= 0 if and only if

wji 6= 0. Then, (A∗
aq, B

∗
aq) is in a reducible form if and

only if A∗
aq is of a block diagonal matrix, which implies

that the graph is disconnected. This contradicts with our

assumption on the graph connectivity. On the other hand,

the graph contains isolated vertex if and only if D matrix

contains zero diagonal element. So, (Aaq , Baq) pair can be

written in the form of (6) in Lemma 2 if and only if it has a

group of isolated agents. Therefore, according to Lemma 3,

the graph is structurally controllable.

IV. NUMERICAL EXAMPLES

In this section, we give some numerical examples to

illustrate the theoretical results demonstrated in the earlier

sections. In section II we just mentioned the controllability

for one dimensional cases. However, all the results can be

readily extended to higher dimensions by Kronecker product,

as argued in [15].

Example 2: A star graph is shown in Fig. 7. It is assumed

that the central agent which is denoted with bold point in

Fig. 7 serves as the leader and reset are just followers. This

structure can be steered to any desired configuration because

leader has direct access to all followers. Under the notion of

structural controllability one can find a set of weight to make

controllability rank condition satisfied; for example, the pair

can be written as

Aaq =









1
5

3
2









Baq =









−1
−5
−3
−2









Another interesting phenomenon is demonstrated in the

following example.

Example 3: The graph shown in Fig. 8. The middle agent,

depicted with bold dot is the leader. It is claimed in [14] that

symmetry with respect to the sufficient condition for a system

to be uncontrollable. However, under the set-up in (4), pair

(Aaq, Baq) can be written as the following form:

Aaq =

















3 −2 0 0 0 0
−2 7 −4 0 0 0
0 −4 4 0 0 0
0 0 0 6 −2 −3
0 0 0 −2 2 0
0 0 0 −3 0 3

















Baq =

















0
−1
0
−1
0
0

















Fig. 7. Star graph

Fig. 8. Symmetrical structure

Next, we will consider the formation control among a

group of agents on the plane, while each agent’s state is of

three dimensions, the x, y positions and its heading angle.

Assume that interconnected topology is as depicted in Fig.

2, where the vertex v1 is selected to be the leader and

the remaining three are followers. Thus, the corresponding

(Aaq, Baq) with proper weighting selections is

Aaq =





5 −1 −2
−1 4 −2
−2 −2 4



 , Baq =





−1
−3
0



 .

Some desired formation such as horizontal line, vertical

−40 −30 −20 −10 0 10 20

−10

0

10

20

X

Y

0 500 1000
−20

0

20

40

Iteration number

u
x

0 500 1000
−5

0

5

10

Iteration number

u
y

0 500 1000
−200

0

200

400

Iteration number
u

θ

Fig. 9. Horizontal line formation. Heading control effort (solid line), X
position control effort (dashed line), Y position control effort (dotted line).
Initial position (circle), final position (diamond), the leader (square)

line and triangular shape are applied to this topology. The

initial position and final position are denoted with circle and

diamond, respectively and the leader is denoted by a square.

The control input for the x position, y position and heading

are depicted with the dashed line, the dotted line and the

solid line, correspondingly. The magnitude of control effort

5747
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Fig. 10. Vertical line formation. Heading control effort (solid line), X
position control effort (dashed line), Y position control effort (dotted line).
Initial position (circle), final position (diamond), the leader (square)

needed for the heading is relatively large comparing to the

positioning control efforts.

V. CONCLUSION

In this paper, the controllability problem for multi-agent

systems interconnected via a fixed weighted topology was in-

vestigated. A novel notion of multi-agent structural controlla-

bility was proposed, and a necessary and sufficient condition

was derived accordingly. It was shown that the connectivity

is not only necessary, but also sufficient for structural con-

trollability of interconnected systems. The simulation results

seem promising and underscore their theoretical counterparts.

Further research is directed on developing an algorithm

to preserve the connectivity among the agents; moreover,

an optimal paradigm needs to be developed for weights’

assignment among agents such that the total energy given to

the system be minimized. In addition, assuming more than

one leader in a group and high order dynamics realization

for each agent are future challenges.
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