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Abstract— This paper addresses the existence problem of the
global supervisor for a distributed plant so that the closed loop
system satisfies a global linear temporal logic specification given
in a decomposable automaton. The paper shows that if there
exist local supervisors for individual sub-plants of a distributed
plant, then a global controller exists for decentralized supervi-
sory control of the plant. This existence result is shown for two
types of distributed plants: loosely cooperating (with determin-
istic events and disjoint synchronization on the common events)
and synchronously communicating (with joint synchronization
on the non-deterministic common events) distributed discrete
event systems. For supervisory control of nondeterministic
transition systems, a new notion of synchronized simulation
relation is introduced to design the decentralized supervisor
using synchronous product composition. An example is given
to illustrate the concept of synchronized supervisory control
of nondeterministic plants. This work is a new contribution
in synchronization of nondeterministic events and actions in
supervisory control.

I. INTRODUCTION

Multi-agent systems control is an emerging rapidly-
growing area that has attracted great academic and industrial
attentions due to its ability to address new challenges in the
control of complex systems composed of several interacting
modules, which could not be tackle in the framework of
classical control. For examples, such new challenges consist
of coordination, synchronization, task sequencing, reconfig-
urability and adaptability of the components [1]. The low
level behavior (precise trajectories) of such systems is treated
using the classical time-driven techniques, while their high
level behavior is modeled and controlled by discrete event
systems (DES) [2]. The events are either inherently discrete
or are captured by the abstraction techniques from continu-
ous/hybrid systems [1], [3], [4], [5]). Supervisory control
of discrete event systems was initiated by Ramadge and
Wonhom [6], [7], [8] to have a high level logical treatment
of systems subject to the order of occurrence of events.
Decentralized supervisory control has been formulated in
order to reduce the synthesis complexity, and to increase
the implementation flexibility, by the collective actions of
more than one supervisor [9]. Decentralized supervisory
control problems arise naturally through the investigation
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of distributed transition systems [10]. Distributed transition
systems are natural models for networked systems with
distributed structure such as multi-agent systems that we are
interested in [11]. According to the way that they coordinate
their activities by synchronizing on common events, they are
further classified into two main classes: loosely cooperating
systems, where the global transition occurs based on local
transitions with no communication of local information, and,
synchronously communicating systems, where the transitions
for some events are determined jointly for all local systems
that synchronize on those events [12].

This paper deals with the decentralized supervisory con-
trol of the multiagent systems, modeled by distributed net-
worked systems. Given a global specification, typically as
a linear temporal logic (LTL) formula or its corresponding
automaton [13], the problem of decentralized supervisory
control of multi-agent systems consists of designing local
supervisors for each agent so that the multi-agent system
achieves the global specification. This design process could
become increasingly complicated for a large number of
agents with many interactions and also with a big size
of LTL formula. One way to reduce the complexity is to
decompose the LTL formula specification (or equivalently, its
corresponding Buchi automaton) for each agent and design
the local controllers, separately, so that when the agents
work as a team, the global specification is satisfied by the
group. Typically, decentralized supervisory control refers to
the structure where supervisors are distributed into different
nodes with different (and possibly overlapping) set of sensors
and actuators [9], [11]. This structure reduces the complexity
of design and cost of implementation of supervisory control
due to cooperation of supervisors by sharing their sensors
and actuators. However, it suffers from the lack of mod-
ularity for the large number of the agents in the system.
To address this problem, we consider both supervisor and
plant to be distributed. This paper addresses the analysis
problem of decentralized supervisory control to ensure that
the distributed system with the existing local supervisors,
respects the decomposable language specification.

This work is inspired from [14] with further contributions
in the following two directions. Firstly, assuming the exis-
tence of local supervisors, we have generalized the existence
result of supervisor, from monolithic systems into loosely
cooperating distributed systems to satisfy a decomposable
global specification. Secondly, the results are extended to
decentralized supervisory control of synchronously commu-
nicating distributed systems with synchronization on nonde-
terministic events. In such systems, the notion of simulation
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relation fails to design the supervisor due to ambiguity of
nondeterministic events. For synchronously communicating
systems we have proposed new notion of synchronized
simulation relation to define nondeterministic supervisors for
nondeterministic plants. This tool also provides a unified
framework to compose synchronously communicating sub-
modules as well as to combine global supervisor and syn-
chronized distributed system to form a closed loop system
that satisfies the global specifications.

The paper is organized as follows. Section II, at first,
develops fundamental lemmas to be used in the proofs of the
main results on decentralized supervisory control of loosely
cooperating systems and then, represents the existence result
of the decentralized supervisor for a loosely cooperating
distributed plant from the existing local supervisors. To deal
with nondeterministic transitions, the results of Section II,
are extended to synchronously communicating systems in
Section III. An example is given in Section IV, to illus-
trate the significance of synchronized simulation relation
and to compare the decentralized supervisory control of
synchronously communicating distributed systems with the
loosely cooperating ones. The paper is finally concluded in
Section V.

II. LOOSELY COOPERATING DISTRIBUTED
SYSTEMS

A. Notations and Definitions

In this section, basic definitions are introduced. We at first
define Transition systems that are simple symbolic models
that can represent most of dynamic systems including control
systems [13].

Definition 1: (Output Transition System) An output tran-
sition system T is a quintuple T = (Q,E,→, O, H) con-
sisting of:

• A set of states Q ;
• A set of events E ;
• A transition relation −→⊆ Q × E × Q in which

(q, e, q′) ∈−→ when q
e−→ q′;

• An output set O ;
• An output function H : Q → O.
Definition 2: (Simulation) Let Ti =

(
Qi, Ei,−→

i
, O, Hi

)
,

i = 1, 2, be two transition systems with the same output set.
A relation R is said to be a simulation relation from T1 to
T2 (denoted by T1 ≺ T2) if

1) (q1, q2) ∈ R ⇔ H1 (q1) = H2 (q2)
2) (q1, q2) ∈ R ∧ q1

e−→
1

q′1 ⇒ ∃q2
e−→
2

q′2| (q′1, q′2) ∈ R

Mutual simulation relation is termed bisimultion relation.
To combine transition systems based on common events,

product composition is defined as:
Definition 3: (Product Composition) Let Ti =(

Qi, Ei,−→
i

, O, Hi

)
, i = 1, 2, ..., n be transition systems

with common output set. The product composition of
Ti, i = 1, 2, ..., n denoted by

n×
i=1

Ti = T1 × ... × Tn,

is the product distributed transition system
n×

i=1
Ti =

(
Q n×

i=1

, E n×
i=1

,−→ n×
i=1

, O, H n×
i=1

)
defined by:

• Q n×
i=1

= {(q1, ..., qn) ∈
n∏

i=1

Qi};

• E n×
i=1

=
n∩

i=1
Ei;

• (q1, ..., qn) e−−−−−→
1,2,...,n

(q′1, ..., q
′
n) if qi

e−→
i

q′i
∀i ∈ {1, ..., n};

• H n×
i=1

(q1, ..., qn) = Hi (qi)∀i ∈ {1, ..., n}

B. Supervisory Control of Loosely Cooperating Systems Us-
ing Product Composition

The following lemma represents the notion of supervisory
control for a monolithic system, using product composition
and simulation relation.

Lemma 1: (Supervisor Realization: Lemma 4.2 in [14])
Let TΣ be the transition system associated with the control
systems Σ : ẋ = f(x, u) and T∆ be its symbolic model.
If the control specifications are given by a linear temporal
logic (LTL) formula represented by Buchi automaton TS ,
which has the same observation space as T∆, an automaton
TC ≺ TS × T∆, with the same output set is a controller
for T∆ that enforces the closed loop system to satisfy the
specifications, i.e.,

TC ≺ TS × T∆ ⇒ TC × T∆ ≺ TS

Lemma 1 tells us that defining TC ≺ TS × T∆ causes
the closed loop system TC × T∆ does not violate the
specifications, as TC × T∆ ≺ TS then L(TC × T∆) ⊆
L(TS) meaning that the observed behavior of the closed
loop system is contained in the observed behavior of the
specification. It is possible to choose the controller to be
TC = TS × T∆ which is an automaton that its langauge is
the intersection of languages of the plant and the specification
languages (can be implemented by the plant while respecting
the desired behavior). However, this maximal choice may
cause blocking. This drawback can be overcome by selecting
a non-blocking sub-transition system of TS × T∆ [14]. The
existence and computation of a controller for TΣ satisfying
TS based on the controller for T∆ satisfying TS is an
implication of Lemma 1 as it is given by

Lemma 2: (Theorem 4.5 in [14]) Let T∆ be the bisimilar
abstraction of TΣ. Then a controller TC forcing the system
T∆ to satisfy the specification TS exists iff there exists a
controller T ′C forcing system TΣ to satisfy the specification
TS . Furthermore, we can take TC = T ′C .

Remark 1: If we have only a simulation relation from T∆

to TΣ then the result of Lemma 2 reduces to only sufficient
result. In this case, if a controller TC forces the system T∆

to satisfy specification TS then there exists a controller T ′C
forcing the system TΣ to satisfy the specification TS , and
we can take TC = T ′C . However, if such controller fails to
exist for T∆ then we can say nothing about the existence of
controller for TΣ fulfilling TS .
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For the rest of the paper, we consider T∆ to be bisimilar
model of TΣ and therefore, designing a controller for T∆ is
equivalent to the synthesis of supervisor for TΣ.

We now show that if there exist supervisors for local
loosely cooperating systems, composed with product com-
position, deriving individual systems to satisfy local speci-
fications, then there exists a global controller such that the
global closed loop system satisfies the global specification.
Following three lemmas are used for the proof the main result
of this section.

Lemma 3: Let T1, T2 and T3 be output transition systems
with the same output set. Then

T1 × T2 = T2 × T1 (1)

and
(T1 × T2)× T3 = T1 × (T2 × T3) (2)

Properties 1 and 2 represent commutativity and associativity
of output product composition, respectively and can be easily
derived from Definition 3.

Lemma 4: Let T1, T2, T3 and T4 be output transition
systems with the same output set. If there exist simulation
relations from T1 to T2 and from T3 to T4, then, there exists
a simulation transition relation from T1 × T3 to T2 × T4,
i.e,

(T1 ≺ T2) ∧ (T3 ≺ T4) ⇒ (T1 × T3) ≺ (T2 × T4)
Proof: See the Appendix for proof.

Lemma 5: Let T1, T2 and T3 be any output transition
systems with the same output set. Then

(T1 × T2 ≺ T1) ∧ (T1 × T2 ≺ T2) ; (3)

T1 ≺ (T2 × T3) ⇒ (T1 ≺ T2) ∧ (T1 ≺ T3) (4)

and

T1 ≺ (T2 × T3) ⇒ (T1 × T2 ≺ T3) ∧ (T1 × T3 ≺ T2) (5)
Proof: See the Appendix for proof.

Remark 2: Property (3) means that any transition system
simulates its product composition with other transition sys-
tems. Property (4) means that if a transition system is similar
to a product composition of transition systems, it is also
similar to each operand of the product composition. Property
(5) is particularly used for definition of supervisor where
TC ≺ T∆ × TS ⇒ TC × T∆ ≺ TS as Lemma 1.
The following theorem states our main result for a product
loosely cooperating system, which is indeed a distributed
system composed with product composition.

Theorem 1: (Loosely Cooperating Decentralized Supervi-
sory Control) Let the plant be a loosely cooperating system
represented by T∆ =

n×
i=1

T∆i with an LTL specification

represented by a decomposable automaton TS =
n×

i=1
TSi

,
where TSi

are the specifications associated with the local
plants T∆i . Then, designing local supervisors as TCi ≺
TSi ×T∆i , i = 1, 2, · · · , n, results that the global supervisor
TC ≺ n×

i=1
TCi

steers the global closed loop system TC × T∆

to satisfy the global specification TS .

Proof: Designing TCi
≺ TSi

× T∆i
, i = 1, 2, · · · , n,

from Lemma 1, it follows that TCi
× T∆i

≺ TSi
that due

to Lemma 4, it leads to
n×

i=1
(TCi

× T∆i
) ≺ n×

i=1
(TSi

) and

using Lemma 3 it results in
(

n×
i=1

(TCi
)
)
×

(
n×

i=1
(T∆i

)
)
≺

(
n×

i=1
(TSi

)
)

.

Remark 3: Using simulation instead of equality in defi-
nitions of local controllers can prevent the blocking prob-
lem by choosing subtransition whose states are accessible
(from the initial states) and co-accessible (reachable to the
marked states). However, if the languages of local closed
loop systems are conflicting it is again required to select
the non-blocking global system and take Trim (Accessible
and Co-accessible) operator to avoid blocking in the global
system. Therefore TC ≺ n×

i=1
TCi

follows TC × T∆ ≺ TS ,
meaning that the global closed loop behavior satisfies the
global specifications using local actuations.

III. SYNCHRONOUSLY COMMUNICATING
DISTRIBUTED SYSTEMS

Loosely cooperating decentralized supervisors lack to su-
pervise the nondeterministic events. In this section, we will
introduce new tools to treat the ambiguity caused by synchro-
nization of common nondeterministic events and then we will
derive the existence of supervisory control for decentralized
synchronously communicating system from the existing local
supervisors.

A. Notations and Definitions

To deal with nondeterminism, we define synchronized
product composition similar to loosely cooperating ones
except that in the new composition, nondeterministic tran-
sitions are joint by a defined communication protocol be-
fore composing transitions. Furthermore, a new notion of
synchronized simulation relation is introduced, where non-
deterministic transitions are joint as a vector event, before
investigation of similarity. These notions are used as essential
tools to synthesize the synchronized supervisory control.

Definition 4: (Synchronized Product) Let Ti =(
Qi, Ei,−→

i
, O, Hi

)
, i = 1, 2, ..., n be transition systems

with common output set. The synchronously communicating
product composition, or in short synchronized product
composition, of Ti, i = 1, 2, ..., n, denoted by

TN =
n⊗

i=1

Ti = T1

⊗
...

⊗
Tn, is the transition

system
n⊗

i=1

Ti =

(
Q nN

i=1

, E nN
i=1

,V , O, H nN
i=1

)
defined by

• Q nN
i=1

=
{

(q1, ..., qn) ∈
n∏

i=1

Qi|Hi (qi) = Hj (qj)
}

∀i, j ∈ {1, ..., n};

• E nN
i=1

= { n∩
i=1

Ei} ∪ {
m∏

i=1

Ei,m ≤ n};

• (q1, ..., qn) e−→ (q′1, ..., q
′
n) for disjoint transitions

qi
e−−→
i

q′i ∀i ∈ {1, ..., n} ( deterministic actions );
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•




q1

...
qm


 −→e




q′1
...
q′m


 for joint transitions qi

e−−→
i

q′i

∀i ∈ {1, ..., m}( non-deterministic actions )
• H nN

i=1

(q1, ..., qn) = Hi (qi) ∀i ∈ {1, ..., n}

• H nN
i=1







q1

...
qm





 = Hi (qi) i ∈ {1, ..., m}, m is the

number of nondeterministic transitions.
Notion of synchronously communicating simulation rela-

tion is defined as follows and will be used for supervisory
control of synchronously communicating systems.

Definition 5: (Synchronized Simulation) Let Ti =(
Qi, Ei,−→

i
, O, Hi

)
, i = 1, 2, be two transition systems

with the same output map. A relation R is said to be a
synchronously communicating simulation relation, or syn-
chronized simulation relation, from T1 to T2 (or T2 simulates
T1 synchronously communicating that is denoted by T1 @
T2) if

1) (q1, q2) ∈ R ⇒ H1 (q1) = H2 (q2)
2) ((q1, q2) ∈ R)∧

(
q1

e−→
1

q′1
)
⇒ ∃q2

e−→
2

q′2| (q′1, q′2) ∈ R

3)


q̄1 =




q11

...
q1m


 , q̄2 =




q21

...
q2m





 ∈ R ⇒

H1 (q̄1) = H2 (q̄2) = Hi (q̄j) , i = 1, 2, j = 1, ..., m.

4)







q11

...
q1m


 ,




q21

...
q2m





 ∈ R

∧







q11

...
q1m


 −→

1 e




q′11
...
q′1m





 ⇒

∃







q21

...
q2m


 −→

2 e




q′21
...
q′2m





 |







q′11
...
q′1m


 ,




q′21
...
q′2m





 ∈ R

for some m ∈ {1, 2, · · · , n}, where e−−→ and −−→
e

denote
the disjoint and joint transitions, respectively.
Based on these definition, we can now represent the existence
results of synchronized supervisory control for monolithic
and decentralized systems.

B. Supervisory Control of Synchronously Communicating
Systems Using Synchronized Product Composition

Following three lemmas are used for the proof of the main
results of this Section.

Lemma 6: Let T1, T2 and T3 be output transition systems
with the same output set. Then

T1

⊗
T2 = T2

⊗
T1 (6)

and (
T1

⊗
T2

) ⊗
T3 = T1

⊗ (
T2

⊗
T3

)
(7)

Properties (6) and (7) refer to the commutativity and as-
sociativity of of output synchronized product composition,
respectively, and are directly derived from definition of
synchronized product composition (Definition 4). The only
difference of this lemma with Lemma 3 is that in the case of
synchronized product, the states can be either scalar (disjoint)
or vector (joint before transitions).

Lemma 7: Let T1, T2, T3 and T4 be output transition
systems with the same output set. If there exist synchronized
simulation transition relations from T1 to T2 and from T3 to
T4, then, there exists a synchronized simulation transition
relation from T1

⊗
T3 to T2

⊗
T4, i.e.,

(T1 @ T2) ∧ (T3 @ T4) ⇒ (T1

⊗
T3) @ (T2

⊗
T4)

Proof: See the Appendix for proof.
Lemma 8: Let T1, T2 and T3 be any output transition

systems with the same output set. Then
(
T1

⊗
T2 @ T1

)
∧

(
T1

⊗
T2 @ T2

)
; (8)

T1 @ (T2

⊗
T3) ⇒ (T1 @ T2) ∧ (T1 @ T3) (9)

and

T1 @ (T2

⊗
T3) ⇒

(
T1

⊗
T2 @ T3

)
∧

(
T1

⊗
T3 @ T2

)

(10)
Proof: See the Appendix for proof.

Remark 4: Property (8) means that any transition system
synchronously simulates its synchronized product compo-
sition with other transition systems. Property (9) means
that if a transition system is synchronously similar to a
synchronized product composition of transition systems, it is
also synchronously similar to each operand of synchronized
product composition. The property (10) is particularly used
for definition of supervisor where TC @ T∆

⊗
TS ⇒

TC

⊗
T∆ @ TS as Theorem 2.

The main result for monolithic supervisory control of
synchronously communicating system is represented as the
following theorem.

Theorem 2: (Synchronized Product Supervisory Control)
Let T∆ and TS be automata corresponding to the plant dy-
namic and the specification represented in LTL formula with
the same output map. Then, a controller TC @ T∆

⊗
TS

reinforces the closed loop system to respect the specification
TS , i.e., (TC @ T∆

⊗
TS) ⇒ (TC

⊗
T∆ @ TS).

Proof: This theorem is a consequent of Lemma 8.
We now, show that if there exist supervisors for local

synchronously communicating systems deriving individual
systems to satisfy local specifications, then, there exists a
global controller such that the global closed loop system
satisfies the global specification.

Theorem 3: Let the plant be a synchronously commu-

nicating system, represented by T∆ =
n⊗

i=1

T∆i
, with an

LTL specification represented by a decomposable automaton
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TS =
n⊗

i=1

TSi
, where TSi

are the specification associated with

the local plants T∆i
. Then, designing local supervisors as

TCi
@ TSi

⊗
T∆i

, i = 1, 2, · · · , n, results that the global

supervisor TC @
n⊗

i=1

TCi derives the global closed loop

system TC

⊗
T∆ to satisfy the global specification TS .

Proof: Designing TCi @ TSi

⊗
T∆i , i = 1, 2, · · · , n,

from Theorem 2, it follows that TCi

⊗
T∆i @ TSi that due to

Lemma 7, it leads to
n⊗

i=1

(TCi

⊗
T∆i

) @
n⊗

i=1

(TSi
) and using

Lemma 6 it results that
(

n⊗
i=1

(TCi
)
) ⊗ (

n⊗
i=1

(T∆i
)
)

@
(

n⊗
i=1

(TSi
)
)

, meaning that the global closed loop behavior

satisfies the global specifications using local actuations.

IV. EXAMPLES
An example of synchronously communicating distributed

systems is shown in Figure 1, where two subsystems are
composed using synchronized product to form the overall
system T∆ = T∆1

⊗
T∆2 with joint transitions defined on

non-deterministic event c and disjoint transitions defined on
deterministic events a and b, as the following protocol.

•
[

q1

q′1

]
−→c

[
q2

q′2

]
,
[

q1

q′1

]
−→c

[
q4

q′4

]

• q2
a−→
1

q3, q3
b−→
1

q1, q4
b−→
1

q5, q5
a−→
1

q1

• q′2
a−→
2

q′3, q′3
b−→
2

q′1, q′4
b−→
2

q′5, q′5
a−→
2

q′1,

Fig. 1. Example of synchronously communicating distributed system.

Fig. 2. Example of distributed supervisor.

By this protocol, synchronized product of two systems,
demands them to have the same order of events a and b, while
the distributed specification TS = TS1

⊗
TS2 (See Figure

Fig. 3. Example of loosely cooperating distributed system.

2) accepts only the ab order. Because of nondeterminism,
a synchronized product is used to realize the supervisory
control of the system. The non-blocking decentralized con-
troller TC = TS

⊗
T∆ is synchronously bisimilar (mutually

similar) to TS , driving the closed loop system to be bisimilar
and hence language equivalent to the specification. Now,
consider Figure 3, where the plant is a loosely cooperating
distributed system that is defined as product composition of
T∆1 and T∆2 . All events of this system are deterministic
and hence, product composition of local supervisors shown
in Figure 2 is sufficient in order to drive the closed loop
system to the aforementioned specification.

V. CONCLUSION

In this paper, we examined the existence of a global
supervisor for loosely cooperating as well as synchronously
communicating distributed systems from the existence of the
local supervisors. The paper has two main contributions:
Firstly, the supervisory control approach for a monolithic
system based on simulation relation and product composi-
tion, is generalized for a decentralized loosely cooperating
system. Secondly, To deal with nondeterminism, a new
notion of synchronized simulation relation is introduced
and then decentralized supervisory control of synchronously
communicating systems is proposed using synchronized sim-
ulation relation and synchronized product composition.
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VI. APPENDIX

A. Proof for Lemma 4

Proof: From definition of product composition of T1×
T3, for all (q1, q3) ∈ Q1 × Q3 we have

q1 −→1 q′1 (11)

q3 −→3 q′3 (12)

H1(q1) = H3(q3) = HT1× T3(q1, q3) (13)

Since T1 ≺ T2 and T3 ≺ T4, from (11), (12) and definitions
of product composition and simulation relation, it follows,
respectively
{ ∃q′2 ∈ Q2, q2 −→2 q′2

H1(q1) = H2(q2) = HT1× T3(q1, q3) = HT2× T4(q2, q4)
(14){ ∃q′4 ∈ Q4, q4 −→4 q′4

H3(q3) = H4(q4) = HT1× T3(q1, q3) = HT2× T4(q2, q4)
(15)

From (14), (15) and (13) it implies that
{ ∀(q1, q3) −→T1× T3 (q′1, q′3)∃(q2, q4) −→T2× T4 (q′2, q

′
4)

HT1× T3(q1, q3) = HT2× T4(q2, q4)
(16)

which means (T1 × T3) ≺ (T2 × T4)

B. Proof for Lemma 5

Proof: The proof of (3) follows from the third item
in Definition 3. The proof of (4) is derived from (3) as
(T2 × T3 ≺ T2) ∧ (T2 × T3 ≺ T3) and finally, the last
property, (5), can be derived from the combination of (3)
and (4).

C. Proof for Lemma 7

Proof: From definition of synchronized product compo-
sition of T1

⊗
T3 for all disjoint states (q1, q3) ∈ Q1× Q3

we have
q1 −→1 q′1 (17)

q3 −→3 q′3 (18)

H1(q1) = H3(q3) = HT1
N

T3(q1, q3) (19)

Since T1 @ T2 and T3 @ T4, from (17), (18) and definitions
of synchronized product composition and synchronized sim-
ulation relation it follows, respectively
{ ∃q′2 ∈ Q2, q2 −→2 q′2

H1(q1) = H2(q2) = HT1
N

T3(q1, q3) = HT2
N

T4(q2, q4)
(20){ ∃q′4 ∈ Q4, q4 −→4 q′4

H3(q3) = H4(q4) = HT1
N

T3(q1, q3) = HT2
N

T4(q2, q4)
(21)

From (20), (21) and (19) it implies that
{ ∀(q1, q3) −→T1

N
T3 (q′1, q′3)∃(q2, q4) −→T2

N
T4 (q′2, q

′
4)

HT1
N

T3(q1, q3) = HT2
N

T4(q2, q4)
(22)

For joint states q̄1 =




q11

...
q1m


 and q̄3 =




q31

...
q3m


 we

have
q̄1 −→e q̄ ′

1 (23)

q̄3 −→e q̄ ′
3 (24)

H1 (q̄1) = H3 (q̄3) = HT1
N

T3 (q̄1, q̄3) (25)

where q̄ ′
1 =




q ′
11

...
q ′
1m


 and q̄ ′

3 =




q ′
31

...
q ′
3m


.

Again, since T1 @ T2 and T3 @ T4, from (23), (24)
and definitions of synchronized product composition and
synchronized simulation relation, it follows, respectively
{ ∃q̄′2 ∈ Q2, q̄2 →2 q̄′2

H1(q̄1) = H2(q̄2) = HT1
N

T3(q̄1, q̄3) = HT2
N

T4(q̄2, q̄4)
(26){ ∃q̄′4 ∈ Q4, q̄4 →4 q̄′4

H3(q̄3) = H4(q̄4) = HT1
N

T3(q̄1, q̄3) = HT2
N

T4(q̄2, q̄4)
(27)

From (26), (27) and (25), it implies that
{ ∀(q̄1, q̄3) →T1

N
T3 (q̄′1, q̄′3)∃(q̄2, q̄4) →T2

N
T4 (q̄′2, q̄

′
4)

HT1
N

T3(q̄1, q̄3) = HT2
N

T4(q̄2, q̄4)
(28)

and the proof follows from (22) and (28), where collectively
mean that T1

⊗
T3 @ T2

⊗
T4.

D. Proof for Lemma 8

Proof: The proof of (8) follows from Definitions 5
and 4. The proof of (9) is derived from (8) and transitivity
of synchronized simulation. The last property, (10), can be
proven using (8) and (9).
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