
Automatica 45 (2009) 2857–2863
Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Interconnection topologies for multi-agent coordination under
leader–follower frameworkI

Zhijian Ji a,∗, Zidong Wang b, Hai Lin c, Zhen Wang a
a College of Automation Engineering, Qingdao University, Qingdao, Shandong, 266071, China
b Department of Information Systems and Computing, Brunel University, Uxbridge, Middlesex, UB8 3PH, UK
c Department of Electrical and Computer Engineering, National University of Singapore, 117576, Singapore

a r t i c l e i n f o

Article history:
Received 10 November 2008
Received in revised form
25 June 2009
Accepted 7 August 2009
Available online 4 October 2009

Keywords:
Multi-agent systems
Controllability
Local interactions
Leader-follower structure

a b s t r a c t

In this paper, the formation control problem of the network of multiple agents is studied in terms of
controllability,where the network is of the leader–follower structurewith some agents taking leaders role
and others being followers interconnected via the neighbor-based rule. It is shown that the controllability
of a multi-agent system can be uniquely determined by the topology structure of interconnection graph,
for which the investigation comes down to that for a multi-agent system with the interconnection graph
being connected. Based on these observations, two kinds of uncontrollable interconnection topologies are
characterized, and a necessary and sufficient eigenvector-based condition is presented. Our studies also
touch upon the selection of leaders.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, the collective behavior in swarmsof entities in the real
world has inspired intensive study of networked systems (Bliman
& Ferrari-Trecate, 2008; Hong, Gao, Cheng, & Hu, 2007; Jadbabaie,
Lin, & Morse, 2003; Olfati-Saber & Murray, 2004; Ren, Beard,
& Atkins, 2007). Understanding the cooperative and operational
principles of such systems may facilitate the development of
the formation control of unmanned air and underwater vehicles,
satellite clusters etc. Formation control problem has been studied
from various perspectives (see e.g. Fax & Murray, 2004; Ji, Lin, &
Lee, 2008; Lin, Francis, &Maggiore, 2005; Lozano, Spong, Guerrero,
& Chopra, 2008; Rahmani & Mesbahi, 2006; Tanner, 2004; Yu,
Hendrickx, Fidan, & Anderson, 2007). In Tanner (2004), the concept
of controllability was put forward for the first time for formation
control of multi-agent systems. The main idea is to transform
the formation control into a classical controllability problem for
fixed topology as well as a switched controllability problem for
switching topology. To date, few results have been available
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along these lines. In Ji and Egerstedt (2007), the controllability
was characterized by graph theory. The controllability problem
was studied under fixed and switching topologies in Liu, Xie,
Chu, and Wang (2006) for the continuous-time case, and in Liu,
Chu, Wang, and Xie (2008) for the discrete-time case. Different
from the classical control, the dynamical behavior of networked
systems relies heavily on how the network is connected, i.e.,
its topology structure. In particular, how the controllability
is affected by the interconnection topology structure among
agents remains a fundamental problem, and the corresponding
investigation is at the very outset. Accordingly, the properties of
interconnection topology structures call for specific investigation
for the controllability problem. This motivates the present study.
In this paper, we consider a multi-agent system of the leader–

follower structure, where some agents take the leaders’ role and
others are followers interconnected via the neighbor-based rule.
The leaders are unaffected by followers and do not abide by
the agreement protocol, whereas the followers are influenced by
leaders directly or indirectly. We show that the controllability
can be uniquely determined by the interconnection topology. A
necessary and sufficient condition is then derived by dividing
the overall system into several connected components. The result
leads to the simplification of controllability for the investigation
of that on a connected interconnection graph. Finally, two
kinds of topology structures are constructed to identify the
uncontrollability of networks. Note that the results in Ji et al.
(2008) were expressed in terms of eigenvalues and eigenvectors
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of subgraphs without showing geometric/topological implications
for them. In this paper, however, the topological implications
of the results are clearly characterized from several different
perspectives. In addition, a necessary and sufficient condition on
controllability is presented in this paper,which shows a connection
between the required leaders and the associated elements of
eigenvectors. Such a connection constitutes the main difference
between Theorem 4 in this paper and the results given in Ji et al.
(2008).

2. Preliminaries

2.1. Graph preliminaries

An undirected graph G consists of a node set V and an edge
set E = {(vi, vj)|vi, vj ∈ V, i 6= j}. vi and vj are neighbors if
(vi, vj) ∈ E . The neighboring relation is indicated by vj ∼ vi.
The number of neighbors of vi is its degree, denoted by di. If all
the nodes of G are pairwise adjacent, G is said to be complete. It is
assumed that there are no self-loops and multiple edges between
any pair of distinct nodes. A path vi0vi1 · · · vis is a finite sequence
of nodes such that vik−1 ∼ vik , k = 1, . . . , s, and a graph G is
connected if there is a path between any pair of distinct nodes. For
two graphs G = (V, E),G′ = (V ′, E ′), we call G′ a subgraph of G,
denoted by G′ ⊆ G, if V ′ ⊆ V and E ′ ⊆ E . A subgraph G′ is said
to be induced from G if it is obtained by deleting a subset of nodes
and all the edges connecting to those nodes. An induced subgraph
of an undirected graph, which is maximal and connected, is said
to be a connected component of the graph. The Laplacian matrix
L(G) (simply,L) of a graph G, where G = (V, E) is an undirected,
unweighted graph, is a symmetricmatrixwith the row and column
for each node defined by

L(G)i,j =

{di, if i = j
−1, if i 6= j and ∃ edge (vi, vj)
0, otherwise.

For presentation convenience, in the rest of this paper,wewill refer
to the eigenvalues and eigenvectors ofL(G) as those of G.

2.2. Problem formulation

The multi-agent system is given by{
ẋi = ui, i = 1, . . . ,N
ẋN+j = uN+j, j = 1, . . . , nl

(1)

whereN and nl represent the number of followers and leaders, res-
pectively; and xi indicates the state of the ith agent, i = 1, . . . ,
N + nl.

Definition 1 (Tanner, 2004). The interconnection graph, G = {V,
E}, is an undirected graph consisting of a set of nodes, V =

{v1, . . . , vN , vN+1, . . . , vN+nl}, indexed by the agents in the group;
and a set of edges, E = {(vi, vj) ∈ V × V|vi ∼ vj}, containing
unordered pairs of nodes that correspond to interconnected
agents.

Definition 2. The topology of an interconnection graphG is said to
be fixed if each node of G has a fixed neighbor set.

Let Ni be the neighboring set of vi, i.e., Ni = {j|vi ∼ vj; j 6= i},
and the protocol be defined by

ui = −
∑
j∈Ni

(xi − xj). (2)
Take xN+1, . . . , xN+nl to play the leaders role, and rename the
agents as{
yi , xi, i = 1, . . . ,N;
zj , xN+j, j = 1, . . . , nl,

where y is the stack vector of all yi, z the stack vector of all zj, and u
the stack vector of all uN+j, j = 1, . . . , nl. Now we assume that
interconnections with the leaders are unidirectional, that is, the
leaders’ neighbors still obey (2), but the leaders are free of such
a constraint and are allowed to pick uN+j arbitrarily, j = 1, . . . , nl.
Then, under protocol (2), the multi-agent system (1) reads[
ẏ
ż

]
= −

[
F R
0 0

] [
y
z

]
+

[
0
u

]
,

where F is the matrix obtained from the Laplacian matrix L of
G after deleting the last nl rows and nl columns, and R is the
N × nl submatrix consisting of the first N elements of the deleted
columns. The dynamics of the followers that correspond to the y
component of the equation can be extracted as

ẏ = −F y−Rz. (3)

Definition 3. The multi-agent system (1) is said to be controllable
under leaders xN+j, j = 1, . . . , nl, and fixed topology if system (3)
is controllable under control input z.

The derivation of results in subsequent sections relies on the
fact that F is a principal submatrix of Lapalacian L of an undi-
rected interconnection graph. Accordingly, the derivation is not
affected by the unidirectional coupling between leaders and fol-
lowers, although system (3) comes from it. Therefore, the unidirec-
tional interconnections with leaders are not discriminated in the
following arguments.
If G’s corresponding multi-agent system is controllable, so is G.

In the following, system (1) is also indicated by the matrix pair
(F ,R), where F ,R are referred to as the corresponding system
and control input matrix, respectively. Once linkages between
agents are confirmed, an interconnection graph, and accordingly
the fixed topology, can be determined in association with a
multi-agent system. On the other hand, given an interconnection
graph, one can have a corresponding multi-agent system, with
interconnections between agents depicted by the graph. In this
sense, amulti-agent systemhas a one-to-one correspondence to an
interconnection graph. Gf and Gl, which are induced respectively
by the follower and leader node set, represent the follower and
leader subgraphs of G. Let Gc1 , . . . ,Gcγ stand for the γ connected
components in Gf . The following definition is introduced in Ji
et al. (2008), which is shown therein to be prerequisite to the
investigation of controllability.

Definition 4 (Leader–Follower Connected Topology). An intercon-
nection graph G is said to be leader–follower connected if for each
connected component Gci of Gf , there exists a leader in the leader
subgraphGl, so that there is an edge between this leader and a node
in Gci , i = 1, . . . , γ .

3. Main results

A property on relabeling of nodes and a necessary and sufficient
condition on controllability are first derived in the section. These
observations simplify the investigation of controllability to that for
a connected graph. Finally, two kinds of interconnection topologies
are constructed to identify the uncontrollability of networks.
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Proposition 1. The controllability of multi-agent system (1) is inv-
ariant under any labeling of the nodes in interconnection graph G if
the interconnection topology of G and the leader positions in G are
fixed.

Proof. Denote byv1, . . . , vN+nl thenodes inG, andvN+1, . . . , vN+nl
the leaders. Let i1, . . . , iN+nl be a permutation of 1, . . . ,N +
nl and vj be relabeled as vij in G′. Then G and G′ have the
same topology structure. Let L and L′ be the Laplacian matrix
of G and G′, respectively. One has L′ = PLPT, where P =
[ei1 , . . . , eiN , . . . , eiN+nl ]

T, eij is the ijth identity vector of dimen-
sion N + nl. By definition, the system matrices of G and G′ are,
respectively, F = ELET,R = ELT ; and F ′ = E ′L′E ′T,R′ =
E ′L′T ′, with E = [e1, . . . , eN ]T, T = [eN+1, . . . , eN+nl ]; E

′
=

[ei1 , . . . , eiN ]
T, T ′ = [eiN+1 , . . . , eiN+nl ]. So F ′ = E ′PLPTE ′T. Since

G′ has the same topology structure and leader positions as those of
G, there exist permutation matrices W of N × N and V of nl × nl
such that E = WE ′P , andWR′ = RV . So F = WE ′PLPTE ′TW T =
WF ′W T. This yields

C = W
[
W TRV ,F ′W TRV , . . . ,F ′N−1W TRV

]
× diag

{
V T, . . . , V T

}
= WC ′diag

{
V T, . . . , V T

}
,

where C and C ′ are controllability matrices of the multi-agent
system associated with G and G′, respectively. Since both W and
V are permutation matrices, rankC = rankC ′. This completes the
proof. �

Let G(1), . . . ,G(δ) stand for the δ connected components of G.
Below is a requirement for leader selection.

Principle 1 (Ji et al., 2008). For each connected component G(i),
the node set of the leader subgraph Gl contains at least one node of
G(i), i = 1, . . . , δ.

If leaders are not selected as above, the necessary condition on
controllability cannot be fulfilled (Ji et al., 2008). After the selection
of leaders, each connected component G(i) can be partitioned into
two subgraphs: G(i)l and G

(i)
f , with G

(i)
l ,G

(i)
f being, respectively, the

induced leader and follower subgraph of G(i). Denote by Li1,...,im
the principal submatrix obtained by selecting the i1th, . . . , imth
rows and columns of L, and assume that G

(i)
f is on the node set

{vni−1+1, . . . , vni}, with n0 = 0, nδ = N, i = 1, . . . , δ. The
following assertion is a combination of Lemmas 1, 2 in Ji et al.
(2008).

Lemma 1. L1,...,N is positive definite and

L1,...,N = diag
{
L1,...,n1 ,Ln1+1,...,n2 , . . . ,Lnδ−1+1,...,N

}
,

where L1,...,n1 ,Ln1+1,...,n2 , . . . ,Lnδ−1+1,...,N are all positive definite
submatrices too.

Theorem 1. The multi-agent system (1) is controllable under fixed
topology and leaders xN+1, . . . , xN+nl if and only if each connected
component G(i) is controllable, i = 1, . . . , δ.

Proof. Without loss of generality, we assume that δ = 3, i.e., G
consists of three connected components.
Let {v1, . . . , vn3} and {vn3+1, . . . , vn6} represent the follower

and leader node set of G, respectively, with n3 = N, n6 =
N + nl. The follower node set can be partitioned into three
parts in accordance with the three connected components, so is
the leader node set. More specifically, since each component G(i)

consists of a leader subgraph G
(i)
l and a follower subgraph G

(i)
f , i =

1, 2, 3; it can be assumed that {v1, . . . , vn1} and {vn3+1, . . . , vn4}
are, respectively, the follower and leader node set of G(1); and
{vni−1+1, . . . , vni} and {vni+2+1, . . . , vni+3} are the follower and
leader node set of G(i), respectively, i = 2, 3; where the indices
satisfy 1 < n1 < n2 < n3 and n3 < n4 < n5 < n6 with respect
to the follower and leader node set, respectively. It follows from
Lemma 1 thatF = diag{F1,F2,F3}, whereFi = Lni−1+1,...,ni , i =
1, 2, 3; n0 = 0, n3 = N . Set ñi , ni − ni−1, i = 1, . . . , 2δ;
the control input matrix can be correspondingly partitioned as
R = [RT

1,R
T
2,R

T
3]
T, with R1 = [R11, 0̃n1×̃n5 , 0̃n1×̃n6 ],R11 :

ñ1 × ñ4;R2 = [0̃n2×̃n4 ,R22, 0̃n2×̃n6 ],R22 : ñ2 × ñ5;R3 =
[0̃n3×̃n4 , 0̃n3×̃n5 ,R33],R33 : ñ3 × ñ6. The controllability matrix C
can then be written as

C =

R1 F1R1 · · · F N−1
1 R1

R2 F2R2 · · · F N−1
2 R2

R3 F3R3 · · · F N−1
3 R3


=

[R11, 0, 0] [F1R11, 0, 0] · · · [F N−1
1 R11, 0, 0]

[0,R22, 0] [0,F2R22, 0] · · · [0,F N−1
2 R22, 0]

[0, 0,R33] [0, 0,F3R33] · · · [0, 0,F N−1
3 R33]

 .
The specific structure of the controllability matrix yields

rankC = rank[R11,F1R11, . . . ,F N−1
1 R11]

+ rank[R22,F2R22, . . . ,F N−1
2 R22]

+ rank[R33,F3R33, . . . ,F N−1
3 R33]. (4)

Denote Ci , [Rii,FiRii, . . . ,F
ñi−1
i Rii], i = 1, . . . , δ; it follows

from Cayley–Hamilton theorem that

rankCi = [Rii,FiRii, . . . ,F
N−1
i Rii], i = 1, . . . , δ.

By (4),

rankC = rankC1 + rankC2 + rankC3. (5)

On the other hand, let ei stand for the ith identity vector with
dimension N + nl and set

P = [e1, . . . , en1 , en3+1, . . . , en4 , en1+1, . . . , en2 ,

en4+1, . . . , en5 , en2+1, . . . , en3 , en5+1, . . . , en6 ]
T.

P is a permutation matrix. It can be verified that PLPT =
diag

{
L̃1, L̃2, L̃3

}
, where

L̃i =

[
Fi Rii
RT
ii ∗

]
. (6)

Consider the ith connected component G(i), i = 1, . . . , δ;
with its follower subgraph G

(i)
f and leader subgraph G

(i)
l on the

node sets {vni−1+1, . . . , vni} and {vni+2+1, . . . , vni+3}, respectively.
Concerning each connected component G(i), we rename the nodes
as follows: w1 , vni−1+1, . . . , wñi , vni; ñi , ni − ni−1;wñi+1 ,
vni+2+1, . . . , wñi+̃ni+3 , vni+3 , ñi+3 , ni+3 − ni+2. It follows that
there is a ‘smaller’ multi-agent system (Fi,Rii) in association with
an interconnection graph, denoted by G̃(i), whose follower and
leader subgraphs are, respectively, on the node sets

{
w1, . . . , wñi

}
and

{
wñi+1, . . . , wñi+̃ni+3

}
; and the linkages between agents in G̃(i)

are the same as those in G(i). Accordingly, the matrix L̃i shown in
(6) is the Laplacian matrix of the interconnection graph G̃(i), and
G̃(i) is controllable if and only if the connected component G(i) is
controllable. At the same time, it follows from (6) and the definition
of Ci that Ci is the controllability matrix of the aforementioned
‘smaller’ multi-agent system. Furthermore, by (5), C is full row
rank if and only if so is each Ci, i = 1, . . . , δ. In other words, the
original multi-agent system is controllable if and only if each G̃(i),
and accordingly each G(i), is controllable. �
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Theorem 1 acts as a separation-like principle for controllability.
It simplifies the controllability problem to the investigation of
that for a connected graph since each G(i) is connected. In view
of this fact, we make, without loss of generality, the following
assumption.

Assumption 1. The interconnection graph G is connected.

Next, we are to present a ‘partition’ for the connected interco-
nnection graph G. Recall that Gl and Gf are, respectively, the leader
and follower subgraph of G. Although G is connected as a whole, it
is not always the case for Gf . So it can be assumed that Gf consists
of γ connected components Gc1 , . . . ,Gcγ . Let G(i) be an induced
subgraph of G, with its node set being the union of those of Gci
and Gl, i = 1, . . . , γ . That is, G(i) can be viewed as a ‘smaller’
interconnection graph with its follower subgraph being Gci and
leader subgraph still being Gl. Then G(1), . . . ,G(γ ) constitute a
‘partition’ of G in the sense that G is partitioned into γ induced
subgraphs G(1), . . . ,G(γ ), with each one having the same leader
subgraph Gl and the union of them being G.

Lemma 2 (Theorem 1 of Ji et al. (2008)). If multi-agent system (1)
with fixed topology is controllable, then the interconnection graph
is leader–follower connected, and each subgraph G(i) is controllable,
where i ∈ {1, . . . , γ }; γ is the number of connected components of
Gf .

Lemma 3 (Lemma 2.2 of Ji and Egerstedt (2007)). Suppose the inter-
connection graph G is connected, the multi-agent system (1) is contr-
ollable if and only if L and F do not share any common eigenvalues.

In view of the above lemmas, we will pursue conditions under
which LaplacianL has multiple eigenvalues. The following lemma
is famous. The readers are referred to, for example, Theorem 9.1.1
of Godsil and Royle (2001) for detail.

Lemma 4 (Interlacing). Suppose M and N are real symmetric
matrices of order m and n with eigenvalues λ1(M) ≥ · · · ≥ λm(M)
and λ1(N) ≥ · · · ≥ λn(N), respectively. If M is a principal submatrix
of N, then the eigenvalues of M interlace those of N, that is,

λi(N) ≥ λi(M) ≥ λn−m+i(N), for i = 1, . . . ,m.

To characterize the desirable topology structure, we give the
following definition.

Definition 5. The κ nodes vi1 , . . . , viκ in the graph G = {V, E} are
said to have the same neighbor set if each of these nodes has the
same set of neighbors {viκ+1 , . . . , viκ+% }, where vij ∈ V, ih 6= ij for
∀h 6= j.

The definition is meaningless for a single node case, i.e., κ = 1.
So κ should not be less than twowhenever the concept of the same
neighbor set is mentioned.

Lemma 5 (Lemma2.1 of Das (2004)). Let G = {V, E} be a graphwith
vertex subset V ′ = {v1, . . . , vκ} having the same set of neighbors
{vκ+1, . . . , vκ+%}, whereV = {v1, . . . , vκ , . . . , vκ+%, . . . , vn}. Then
the Laplacianmatrix of the graphG has at least κ−1 equal eigenvalues
and they are all equal to the cardinality % of the neighbor set. Also the
corresponding κ − 1 eigenvectors are

[1,−1, 0, . . . , 0]T, [1, 0,−1, 0, . . . , 0]T, . . . ,
[1, 0, . . . ,−1︸ ︷︷ ︸

κ

, 0, . . . , 0]T.

Theorem 2. The multi-agent system (1) is uncontrollable if the
following two conditions are fulfilled simultaneously:
(i) there are nodes with the same neighbor set in the interconnection
graph G;

(ii) leaders are selected as follows:
• when κ = 2, i.e., there are only two nodes with the same
neighbor set, the leaders are to be selected from the remaining
nodes in G other than the two nodes with the same neighbor
set.
• when κ ≥ 3, the number of leaders is not greater than κ − 2
and the leaders are to be selected arbitrarily.

Proof. Since G is connected, any selection of leaders accords with
the prerequisite of controllability, i.e., the leader–follower con-
nectedness between leader and follower subgraphs. By Propo-
sition 1, it can be assumed, without loss of generality, that
{v1, . . . , vκ} has the same set of neighbors {vκ+1, . . . , vκ+%}.
When κ = 2, the two nodes with the same neighbor

set can be indicated with v1, v2. It follows from Lemma 5 that
[1,−1, 0, . . . , 0︸ ︷︷ ︸

N+nl−2

]
T is an eigenvector of Laplacian L associated

with the eigenvalue %. Since the nl leaders are chosen from
the remaining nodes v2, . . . , vN+nl and the system matrix F is
obtained fromL by deleting the rows and columns corresponding
to the leader nodes, it can be verified by straightforward
computation that [1,−1, 0, . . . , 0︸ ︷︷ ︸

N−2

]
T is an eigenvector of F

associated with the same eigenvalue %. So L and F share a
common eigenvalue %. By Lemma 3, the multi-agent system (1) is
uncontrollable.
When κ ≥ 3, with the selected nl ≤ κ−2 leaders,G can be ‘par-

titioned’, as mentioned above, into γ subgraphs G(1), . . . ,G(γ ).
Since v1, . . . , vκ possess the same neighbor set, the induced sub-
graph on the node set {v1, . . . , vκ , vκ+1, . . . , vκ+%}, indicatedwith
G̃, is connected. As a consequence, G̃must belong to aG(i) as long as
the leaders are chosen in advance. In other words, it is a subgraph
of this G(i), where the index imay vary with respect to differently
selected leader set, i ∈ {1, . . . , γ }.
By Lemma 5, the Laplacian matrixL(i) associated with G(i) has

an eigenvalue %with its algebraicmultiplicity at least κ−1. For the
convenience of presentation, we assumewithout loss of generality
that % = λ1 = · · · = λκ−1. Denote by F (i) the system matrix
of the ‘smaller’ multi-agent system corresponding to G(i). Recall
that Gci and Gl are, respectively, the follower and leader subgraph
of G(i). If there are mi nodes in Gci ,F (i) is mi × mi and L(i) is
(mi + nl) × (mi + nl), where nl is the number of leaders, i.e.,
the number of nodes in Gl. It can be seen that F (i) is a principal
submatrix of L(i) with order mi. Let µ1 ≥ µ2 ≥ · · · ≥ µmi be the
eigenvalues of F (i). It follows from Lemma 4 that

λnl+1 ≤ µ1 ≤ λ1

whereλ1 ≥ · · · ≥ λmi+nl are the eigenvalues ofL(i). This, together
with nl ≤ κ − 2, gives rise to

µ1 = λ1 = · · · = λnl+1 = · · · = λκ−1,

which means that F (i) andL(i) have at least one common eigen-
valueµ1 = λ1 = %. In view of Lemma 3, the induced subgraphG(i)
is uncontrollable. Themulti-agent system is then uncontrollable by
following Lemma 2. �

Example 1. The example is employed to illustrate Theorem 2. The
interconnection graph (a) Fig. 1 corresponds to the situation κ = 2,
where v1, v2 have the same neighbor set {v3, v4, v6}. If v5, v6 are
chosen to be leaders, computations show that [1,−1, 0, 0, 0, 0]T
and [1,−1, 0, 0]T are, respectively, the eigenvector of L and F ,
associated with the same eigenvalue % = 3. The corresponding
multi-agent system is uncontrollable. The interconnection graph
(b) corresponds to the situation κ ≥ 3, where each node in the
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Fig. 1. Two interconnection graphs.
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Fig. 2. Graph (a) is uncontrollable, while (b) is controllable.

subset {v1, v2, v3} has the same set of neighbors {v4, v5, v6, v7}. So
κ = 3, % = 4. Since κ = 3, one only need consider the case of
single leader. The leader is indicated with vl and falls into one of
the following three cases: (a) vl ∈ {v1, v2, v3, v5, v6, v8, v11, v12};
(b) vl ∈ {v4, v7, v9}; (c) vl = v10. In case of (a), the follower
subgraph Gf is connected. Accordingly, γ = 1. In case of (b),
Gf consists of two connected components, and then γ = 2. In
case of (c), Gf consists of three connected components, which are
denoted, respectively, byGc1 ,Gc2 , andGc3 , whereGc1 is on the note
set {v1, v2, v3, v4, v5, v6, v7, v8, v9},Gc2 on the node v11 andGc3 on
the node v12. In any case, it can be verified that the LaplacianL and
the systemmatrixF share the common eigenvalue 4. Accordingly,
the multi-agent system with the single leader and the topology
structure depicted in (b) of Fig. 1 is uncontrollable regardless how
the leader is selected.

Lemma 6 (Corollary 2.3 Merris (1998)). Let G be a graph on n
vertices. If 0 6= µ < n is an eigenvalue of Laplacian matrix of G, then
any eigenvector associated with µ takes the value 0 on every vertex
of degree n− 1.

Let χ stand for the number of nodes in the interconnection
graph G. Assume that there are m nodes, say vχ−(m−1), . . . , vχ ,
in the interconnection graph G, with each one having the degree
χ − 1.
Theorem 3. The multi-agent system (1) is uncontrollable if leaders
are chosen from the node set {vχ−(m−1), . . . , vχ }, with each one in
the set having degree χ −1, and there is an eigenvalue of G not equal
to 0 and χ . In this case, the dimension of the controllable subspace is
one.

Proof. Let {v1, . . . , vN} and {vN+1, . . . , vN+nl} stand for the
follower and leader node set, respectively, where χ , N+ nl, with
leaders chosen from {vχ−(m−1), . . . , vχ }, 1 ≤ nl ≤ m. Let µ be an
eigenvalue of G not equal to 0 and χ . By Lemma 6, any eigenvector
associated with µ takes value 0 on the (N + i)th element, i =
1, . . . , nl. Accordingly, any eigenvector ξ associated with µ can be
denoted by [ξ T1,...,N , 0, . . . , 0︸ ︷︷ ︸

nl

]
T, where ξ1,...,N is the vector consisting

of the first N elements of ξ . Since F is a principle submatrix of the
LaplacianL, obtained by deleting the last nl rows and nl columns of
L, a straightforward calculation shows that ξ1,...,N is an eigenvector
of F corresponding to the eigenvalue µ. So, L and F share a
common eigenvalue µ. By Lemma 3, the multi-agent system (1)
is uncontrollable. Direct computation shows that under the given
conditions, each row of the controllability matrix is[
1, . . . , 1︸ ︷︷ ︸

nl

,−nl, . . . ,−nl︸ ︷︷ ︸
nl

, (−nl)2, . . . , (−nl)2︸ ︷︷ ︸
nl

, . . . ,

·(−nl)N−1, . . . , (−nl)N−1︸ ︷︷ ︸
nl

]
.

Accordingly, the dimension of the controllable subspace is one. �

Corollary 1. A complete graph is uncontrollable.

The corollary holds because each node in a complete graph
has a degree of χ − 1. Corollary 1 is Proposition V.1 in Tanner
(2004), employed therein to show that increased connectivity has
an adverse effect on controllability. Here, Theorem 3 implies that,
rather than completeness of the overall graph, the existence of one
node with the degree (of connectivity) χ − 1 is enough to destroy
the controllability only if it is chosen as a leader.

Example 2. The example is used to verify Theorem 3. The nodes
number χ of the interconnection graph (a) of Fig. 2 is 6. v5 and v6
have the same degree χ−1. The eigenvalues ofL are 0, 2, 3, 5, 6, 6.
If v5 and v6 are chosen to play leaders role, calculations show that
the eigenvalues of F are 2, 2, 3, 5. In this case, 2, 3, 5 are common
eigenvalues of F and L. If the leader is single, say v5, it can be
verified that F and L also share the common eigenvalues 2, 3, 5.
–7000

–6000

–5000

–4000

–3000

–2000

–1000

0

1000

–1000 0 1000 2000 3000 4000 5000 6000 7000 0 2 4 6 8 10 12

–2

0

2

4

6

8

10
a b

Fig. 3. (a) is the system trajectory in plane, with the associated graph depicted in (b) of Fig. 2. (b) depicts the initial state and the final desired configuration, which is the
magnification of the corresponding part of (a).
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In both cases, the rank of the controllabilitymatrix is one. Although
the controllable subspace dimension is just one, the system can
be turned to be controllable by a slight modification of original
graph. For example, if the connection/edge between nodes 1 and
6 is removed, see (b) of Fig. 2, the original system turns to be
controllable. Fig. 3 depicts the trajectories of the four controllable
followers in the plane, where Fig. 3(a) is magnified in apart in
Fig. 3(b) to observe clearly the initial state and the final desired
configuration of the system.

Theorem 4. Themulti-agent system is controllable if and only if there
is no eigenvector of G taking 0 on the elements corresponding to the
leaders.

Proof. The theorem can be reformulated as stating that the system
is uncontrollable if and only if there exists an eigenvector of G
taking 0 on the elements corresponding to the leaders.
(Sufficiency) Suppose {vi1 , . . . , viN } and {viN+1 , . . . , viN+nl } are,
respectively, the follower and leader node set. Set E , [ei1 , . . . ,

eiN ]
T, T ,

[
eiN+1 , . . . , eiN+nl

]
, where eij is the ijth identity vector

with dimension N + nl. Then F = ELET, R = ELT . Let y be
an eigenvector ofL associated with the eigenvalue λ, with the ijth
component of y, i.e. yij , being zero, j = N + 1, . . . ,N + nl. It can
be directly verified that ETEy = y. Then, from Ly = λy, one has
ELETEy = λEy, T TLETEy = 0. That is, F y1 = λy1,RTy1 = 0,
where y1 , Ey =

[
yi1 , . . . , yiN

]T. By the controllability PBH
criteria, the multi-agent system (F ,R) is uncontrollable.
(Necessity) Since F is symmetric, its left eigenvectors are equal to
the right ones. Suppose the system is uncontrollable. Then, by the
PBH criteria of controllability, there exists a vector x ∈ RN such
that F x = λx for some λ ∈ R, withRTx = 0. Let

P , [ei1 , . . . , eiN , eiN+1 , . . . , eiN+nl ]
T
=

[
E
T T

]
,

where E, T are matrices defined as above. It follows that P is a
permutation matrix and

PLPT
[
x
0

]
=

[
F R

RT T TLT

] [
x
0

]
= λ

[
x
0

]
.

Accordingly, y , PT
[
x
0

]
is an eigenvector of L, with the compo-

nents corresponding to the leaders being zero. This completes the
proof. �

Remark 1. Theorem 4 characterizes the controllability from the
viewpoint of eigenvector of Laplacianmatrix, while Lemma 3 from
the viewpoint of eigenvalue. The result means that construction
of controllable topologies may benefit from the graphical impli-
cations of eigenvectors of Laplacian matrix. Also, the verification
of controllability and the selection of leaders can be facilitated by
checking the eigenvectors of Laplacian matrix.

4. Conclusions

We have studied connections between controllability of multi-
agent systems and topology structures of the interconnection
graph. Controllability has been shown to be uniquely determined
by the topology structure as long as leaders are designated. Two
kinds of uncontrollable topologies have been characterized, and
necessary and sufficient conditions have been proposed. One ad-
vantage of the results is that controllability, and then the feasibil-
ity of formation control, can be determined directly from the graph
topology itself. This adds to the understanding of formation control
by means of the classical concept of controllability.
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