
Decomposability of Global Tasks for Multi-agent Systems

Mohammad Karimadini and Hai Lin

Abstract— Multi-agent system is a rapidly developing re-
search area with strong support from both civilian and military
applications. One of the essential problems in multi-agent
system research is how to design local interaction rules and
coordination principles among agents such that the whole sys-
tem achieves desired global behaviors. To tackle this problem,
a divide-and-conquer approach was proposed in [1], and the
basic idea is to decompose the requested global specification into
subtasks for individual agents in such a way that the fulfillment
of these subtasks by each individual agent should lead to
the satisfaction of the global specification. Then, the design
reduces to achieving the assigned subtasks for corresponding
individual agents. In [1], it was shown that not all global tasks
can be decomposed, and a necessary and sufficient condition
on the decomposability of a task automaton between two
agents was presented. For more than two agents, we then
proposed a hierarchical algorithm as a sufficient condition
for decomposability. This paper aims to extend the necessary
and sufficient decomposability conditions for any arbitrary
finite number of cooperative agents. A new necessary and
sufficient condition on decomposability of a task automaton
is proposed, here. Several examples are provided to illustrate
the decomposition scheme and conditions.

I. INTRODUCTION

Multi-agent system is a rapidly developing cross-

disciplinary research area that has been obtaining strong

support from both civilian and military applications such as

coordinated surveillance, target acquisition, reconnaissance,

underwater or space exploration, assembling and transporta-

tion and rapid emergency response [2]. It is known that

sophisticated collective behaviors can emerge through the co-

operation of rudimentary agents with simple local interaction

rules. But, most studies in the multi-agent system literature

have been focused on bottom-up approaches [3], and mainly

through simulation, empirical and heuristic approaches [4]-

[7]. The past several years have seen significant research

efforts in the theoretical analysis on multi-agent systems

using graph theory [8] and symbolic control of swarming

systems [9], [10]. However, the cooperative control of multi-

agent system is still in its infancy with significant practical

and theoretical challenges that are difficult to be formulated

and tackled by the traditional methods [9], [11].

One of the essential problems in cooperative control of

multi-agent systems is how to design the local interaction

rules and coordination principles among agents such that

the whole system achieves a desired global specification.

To tackle this challenge, in [1], we proposed a divide-

and-conquer approach by decomposing the requested global

M. Karimadini and H. Lin are both from the Department of Electrical
and Computer Engineering, National University of Singapore, Singapore.
Corresponding author, H. Lin elelh@nus.edu.sg

specification into subtasks for individual agents such that

the fulfillment of these subtasks by each individual agent

will lead to the satisfaction of the global specification. Then,

the design reduces to achieving the assigned subtasks for

corresponding individual agents. In order to pursue the idea,

several questions need to be answered, such as how to

describe the global specification and subtasks in a succinct

and formal way, how to decompose the global specification,

whether it is always possible to decompose, and if not what

is the condition for decomposability.

This paper continues the efforts in our previous work

[1] and aims to answer these questions and pace the way

towards a formal design method for multi-agent systems.

Here, the task for a group of intelligent agents are represented

as an automaton due to its expressibility and similarity to

our human logical commands [12], [13]. Then, the decom-

position of a global task actually becomes the automaton

decomposition problem that has been studied in the computer

science literature. Roughly speaking, two different classes of

problems have been studied so far. The first problem is to

design the event distribution so as to make the automaton

decomposable, which is typically studied in the context

of concurrent systems. For example, [14] characterized the

conditions for decomposition of asynchronous automata in

the sense of isomorphism based on the maximal cliques of

the dependence graph. Their characterization of indepen-

dency relies on forward diamond (FD) and independent

diamond (ID) rules, representing the intuitive notion of

independent order and independent choice of independent

events (private events from different local event sets). Our

decomposability conditions also include two conditions ad-

dressing the notion on independence (we will call them

DC1 and DC2). However, in DC1 and DC2, although

independent events e1 and e2 starting from one state are

allowed to occur in any order, different occurring orders may

lead to different states. This relaxation allows us to obtain

the decomposition in the sense of bisimulation rather than

isomorphism in [14]. Generally, some automata may satisfy

DC1 and DC2, but not necessarily FD and ID. On the

other hand, the second problem assumes that the distribution

of the global event set is given and the goal is to find

conditions on the automaton such that it is decomposable.

This is usually called synthesis modulo problem [13], and

bisimulation synthesis modulo for a global automaton was

addressed in [15] by introducing a necessary and sufficient

condition for automaton decomposition based on language

product of the automaton and determinism of its bisimulation

quotient. Obtaining the bisimulation quotient, however, is

generally a difficult task. This motivates us to develop a new

49th IEEE Conference on Decision and Control
December 15-17, 2010
Hilton Atlanta Hotel, Atlanta, GA, USA

978-1-4244-7744-9/10/$26.00 ©2010 IEEE 4192

necessary and sufficient condition and consider more general

cases, which may occur in multi-agent systems.

Following [1], we assume that the global desired behavior

can be represented as a deterministic automaton, whose event

set is the union of the collection of local event sets for each

agent. Under this assumption, the local task automaton for an

individual agent can be obtained through natural projection

of the global task automaton into its corresponding local

event set. Unfortunately, it was shown in [1] that not all

global task automaton can be decomposed in this way, which

means that the composition of the obtained sub-task automata

is not equivalent to the global task automaton. Formally,

the composition is through classical parallel composition,

while the equivalence is in the sense of bisimulation. Fur-

thermore, in [1] a necessary and sufficient condition on the

decomposability of a task automaton between two agents was

proposed. For more than two agents a hierarchical algorithm

was presented that was shown to be only sufficient condition.

In this paper, we aim to further extend the decomposability

result to any arbitrary finite number of cooperative agents,

as a necessary and sufficient condition.

The rest of the paper is organized as follows. Preliminary

results, notations, definitions and problem formulation are

represented in Section II. Section III introduces the necessary

and sufficient condition for decomposition of an automaton

with respect to parallel composition and arbitrary finite

number of event sets. Finally, the paper concludes in Section

IV with remarks and discussions.

II. PROBLEM FORMULATION

We first recall the definition of an automaton [16].

Definition 1: (Automaton) An automaton is a tuple A =
(Q, q0, E, δ) consisting of

• a set of states Q;

• the initial state q0 ⊆ Q;

• a set of events E that causes transitions between the

states, and

• a transition relation δ ⊆ Q×E×Q such that (q, e, q′) ∈
δ if and only if δ(q, e) = q′ (or q

e
→ q′).

The transition relation can be extended to a finite string

of events, S ∈ E∗, where E∗ stands for Kleene−Closure
of E (the set of all finite strings over elements of E), as

δ(q, ε) = q, and δ(q, Se) = δ(δ(q, S), e) for S ∈ E∗

and e ∈ E. We focus on deterministic task automata that

are simpler to be characterized, and cover a wide class of

specifications. The qualitative behavior of a deterministic

system is described by the set of all possible sequences of

events starting from the initial state. Each such a sequence

is called a string, and a collection of strings represents the

language generated by the automaton, denoted by L(A). The

existence of a transition over a string S ∈ E∗ from a state

q ∈ Q is denoted by δ(q, S)!. Considering a language L, by

δ(q, L)! we mean that ∀ω ∈ L : δ(q, ω)!.

Next, the successive event pair and adjacent event pair for

an automaton are defined as follows.

Definition 2: (Successive event pair) Two events e1 and

e2 are called successive events if ∃q ∈ Q : δ(q, e1)! ∧
δ(δ(q, e1), e2)! or δ(q, e2)! ∧ δ(δ(q, e2), e1)!.

Definition 3: (Adjacent event pair) Two events e1 and e2

are called adjacent events if ∃q ∈ Q : δ(q, e1)! ∧ δ(q, e2)!.
To compare the task automaton and the composition of its

decomposed automata, we use the simulation relation [12],

defined as follows.

Definition 4: (Simulation) Given two automata Ai =
(

Qi, q
0
i , E, δi

)

, i = 1, 2, a relation R ⊆ Q1×Q2 is said to be

a simulation relation from A1 to A2 (denoted as A1 ≺ A2)

if

1)
(

q0
1 , q

0
2

)

∈ R
2) ∀ (q1, q2) ∈ R, δ1(q1, e) = q′1, then ∃q′2 ∈ Q2 such

that δ2(q2, e) = q′2, (q
′
1, q

′
2) ∈ R.

A mutual symmetric similarity between A1 and A2 is called

bisimilarity and denoted as A1
∼= A2. Two automata are

(bi)similar when the (bi)simulation relation is defined over

all (Q1 × Q2) Q1, for all e ∈ E.

In this paper, we assume that the task automaton AS and

the sets of local events Ei are all given. It is further assumed

that A is a deterministic automaton while its event set E is

given as the union of local event sets, i.e., E = ∪iEi. The

problem is to check whether the task automaton AS can

be decomposed into sub-automata ASi
on the local event

sets Ei, respectively, such that the collection of these sub-

automata ASi
is equivalent to AS when put them together.

The equivalence is in the sense of bisimilarity as defined

above, while the clustering process for these sub-automata

ASi
could be in the usual sense of parallel composition as

defined below. Parallel composition [16] is a common way

to model the interactions between automata, and is employed

here to represent the global behavior of a team of cooperative

multi-agents.

Definition 5: (Parallel Composition) [16] Let Ai =
(

Qi, q
0
i , Ei, δi

)

, i = 1, 2 be automata. The parallel com-

position (synchronous composition) of A1 and A2 is the

automaton A1||A2 = (Q, q0, E, δ), defined as

• Q = Q1 × Q2;

• q0 = (q0
1 , q

0
2);

• E = E1 ∪ E2;

• ∀(q1, q2) ∈ Q, e ∈ E : δ((q1, q2), e) =

(δ1(q1, e), δ2(q2, e)) , if

{

δ1(q1, e)!, δ2(q2, e)!
e ∈ E1 ∩ E2

;

(δ1(q1, e), q2) , if δ1(q1, e)!, e ∈ E1\E2;

(q1, δ2(q2, e)) , if δ2(q2, e)!, e ∈ E2\E1;

undefined, otherwise

The parallel composition of Ai, i = 1, 2, ..., n is called

parallel distributed system, and is defined based on the

associativity property of parallel composition [12] as
n

‖
i=1

Ai = A1 ‖ ... ‖ An = A1 ‖ (A2 ‖ (· · · ‖ (An−1 ‖ An))).
Next, let us recall the operation of natural projection

that will be used later to obtain the decomposed subtask

automata.

Definition 6: (Natural Projection on String) Consider a

global event set E and its local event sets Ei, i = 1, 2, ..., n,

4193

with E =
n
∪

i=1
Ei. Then, the natural projection pi : E∗ → E∗

i

is inductively defined as

pi(ε) = ε;

∀S ∈ E∗, e ∈ E : pi(Se) =

{

pi(S)e if i ∈ loc(e);
pi(S) otherwise.

Here loc(e) = {i|e ∈ Ei}.

The natural projection is also defined on automata as

Pi(AS) : AS → ASi
, where, ASi

are obtained from AS by

replacing its events that are belonged to E\Ei by ε-moves,

and then, merging the ε-related states. The natural projection

is formally defined on an automaton as follows.

Definition 7: (Natural Projection on Automaton) Consider

an automaton AS = (Q, q0, E, δ) and local event sets Ei,

i = 1, 2, ..., n, with E =
n
∪

i=1
Ei. Then, Pi(AS) = (Qi =

Q/∼Ei
, [q0]Ei

, Ei, δi), with δi([q]Ei
, e) = [q′]Ei

if there

are states q1 and q′1 such that q1 ∼Ei
q, q′1 ∼Ei

q′, and

δ(q1, e) = q′1. Here, [q]Ei
= [q]i denotes the equivalence

class of q defined on ∼ Ei, where, the relation ∼ Ei is the

least equivalence relation on the set Q of states such that

δ(q, e) = q′ ∧ i /∈ loc(e) ⇒ q ∼Ei
q′.

The following example elaborates the concept of natural

projection on a given automaton.

Example 1: Consider an automaton AS :

// • a //

e2

��

•

e1

��
•

e4 // • b // •

with the event set E = E1 ∪ E2 and local event sets E1 =
{a, b, e1}, E2 = {a, b, e2, e4}. The natural projections of AS

into E1 is obtained as P1(AS): • •̌
a

77
boo •

e1oo by replacing

e2, e4 ∈ E\E1 with ε and merging the ε-related states.

Similarly, the projection P2(AS) is obtained as P2(AS):

// •
e2 //

a

55•
e4 // • b // •.

To investigate the interactions of transitions in two au-

tomata, particularly in P1(AS) and P2(AS), the interleaving

of strings is defined as follows.

Definition 8: Consider two sequences q1

e1→ q2

e2→

...
en→ qn and q′1

e′

1→ q′2
e′

2→ ...
e′

m→ q′n, the interleav-

ing of their corresponding strings, S = e1e2...en and

S′ = e′1e
′
2...e

′
m, is denoted by S|S′, and defined as

S|S′ = L{PA(q1, S)||PA′(q′1, S
′)}, where, PA(q1, S) =

({q1, ..., qn}, {q1}, {e1, ..., en},δPA) with δPA(qi, ei) =
qi+1, i = 1, ..., n − 1, and δPA′ is defined in a similar way.

Based on these definitions, we may now formally define

the decomposability of an automaton with respect to parallel

composition and natural projections as follows.

Definition 9: (Automaton decomposability) A task au-

tomaton AS with the event set E and local event sets Ei,

i = 1, ..., n, E =
n
∪

i=1
Ei, is said to be decomposable with

respect to parallel composition and natural projections if
n

‖
i=1

Pi (AS) ∼= AS .

It is easy to show by simple counter examples (see

Examples 2 - 5) that not all automata are decomposable with

respect to parallel composition and natural projections. Then,

a natural follow-up question is what makes an automaton

decomposable. It can be formally stated as follows.

Problem 1: Given a deterministic task automaton AS and

local event sets Ei, i = 1, · · · , n, what is the necessary and

sufficient condition that AS is decomposable with respect

to parallel composition and natural projections Pi : AS →

Pi (AS), i = 1, · · · , n, such that
n

‖
i=1

Pi (AS) ∼= AS?

III. DECOMPOSABILITY OF TASK AUTOMATON

A. Decomposability Condition for 2 agents

First, let us recall the main result in [1] for the decompos-

ability of an automaton AS for two cooperative agents, to

be used as a basis for the more general case of an arbitrary

finite number of agents.

Lemma 1: (Theorem 1 in [1])) A deterministic automaton

AS = (Q, q0, E = E1∪E2, δ) is decomposable with respect

to parallel composition and natural projections Pi : AS →
Pi(AS), i = 1, 2, such that AS

∼= P1(AS)||P2(AS) =
(Z, z0, E, δ||) if and only if it satisfies the following decom-

posability conditions (DC): ∀e1 ∈ E1\E2, e2 ∈ E2\E1, q ∈
Q, S ∈ E∗,

• DC1: [δ(q, e1)!∧δ(q, e2)!] ⇒ [δ(q, e1e2)!∧δ(q, e2e1)!];
• DC2: δ(q, e1e2S)! ⇔ δ(q, e2e1S)!, and

• DC3: ∀S, S′ ∈ E∗, sharing the same first appearing

common event a ∈ E1 ∩E2, S 6= S′, q ∈ Q: δ(q, S)!∧
δ(q, S′)! ⇒ δ(q, p1(S)|p2(S

′))! ∧ δ(q, p1(S
′)|p2(S))!;

• DC4: ∀i ∈ {1, 2}, x, x1, x2 ∈ Qi, x1 6= x2, e ∈ Ei,

t ∈ E∗
i , δi(x, e) = x1, δi(x, e) = x2: δi(x1, t)! ⇔

δi(x2, t)!.

Remark 1: Intuitively, the decomposability condition

DC1 means that for any adjacent pair of private events

(e1, e2) ∈ {(E1\E2, E2\E1), (E2\E1, E1\E2)} (from dif-

ferent private event sets), both orders e1e2 and e2e1 should

be legal from the same state, unless they are mediated by a

common string.

While DC1 addresses the decision on adjacent events,

DC2 deals with the decision on the order of successive

events and states that if any order of a pair of adjacent pri-

vate events (e1, e2) ∈ {(E1\E2, E2\E1), (E2\E1, E1\E2)}
(from different private event sets) is necessary condition of

occurrence of any string S ∈ E∗, then the other order also

should be legal for such occurrence (see Example 3). Note

that, as a special case, S could be ε.

The condition DC3 means that if two strings S and

S′ share the same first appearing common event, then any

interleaving of these two strings should be legal in AS . This

requirement is due to synchronization of projections of these

strings in P1(AS) and P2(AS).

The last condition DC4, ensures the symmetry of mu-

tual simulation relations between AS and P1(AS)||P2(AS).
Given the determinism of AS , this symmetry is guaranteed

when each local task automaton bisimulates a deterministic

4194

automaton, leading to the existence a deterministic automa-

ton that is bisimilar to P1(AS)||P2(AS). If the simulation

relations are not symmetric, then some of the sequences that

are allowed in AS will be disabled in P1(AS)||P2(AS).

The following several examples are reviewed from [1] to

illustrate the decomposable and undecomposable automata

based on the decomposability conditions in Lemma 1.

Example 2: This example shows an automaton that sat-

isfies DC2, DC3 and DC4, but not DC1, leading to

undecomposability.

Let an automaton AS to be // •
e1 //

e2
))SSSSSS •

•

with local

event sets E1 = {e1} and E2 = {e2}. The parallel composi-

tion of P1(AS) : // •
e1 // • and P2(AS) : // •

e2 // •

is P1(AS)‖P2(AS) : // •
e1 //

e2
))SSSSSS •

e2 // •

• e1

55kkkkkk

. Therefore,

AS is not decomposable, since two adjacent events e1 ∈
E1\E2 and e2 ∈ E2\E1 do not respect DC1. One can

observe that, if in this example e1 ∈ E1\E2 and e2 ∈ E2\E1

were separated by a common event a ∈ E1 ∩ E2, then the

automaton // • a //
e2

))SSSSSS •
e1 // •

•

with local event sets

E1 = {e1, a} and E2 = {e2, a}, was decomposable.

Example 3: This example shows an automaton

which respects DC1, DC3 and DC4, but is

undecomposable due to violation of DC2. Consider

automata AS : // •
e1 // •

e2 // •
a // • with

E1 = {a, e1}, E2 = {a, e2}, leading to P1(AS)||P2(As):
• e2

))SSSSSS

// •
e1 55kkkkkk

e2
))SSSSSS •

a // •

• e1

55kkkkkk

. The transition

δ||(z0, e2e1a)! in P1(AS)||P2(AS), but ¬δ(q0, e2e1a)!
in AS . If e1 ∈ E1\E2 and e2 ∈ E2\E1 were separated

by a common event a ∈ E1 ∩ E2, then the automaton

// •
e1 // • a // •

e2 // • with local event sets E1 = {e1, a}

and E2 = {e2, a}, was decomposable. Also if both orders

of e1 ∈ E1\E2 and e2 ∈ E2\E1 were legal for occurrence

of a, i.e., if AS was •
e2 // • a // •

// •
e1 55kkkkkk

e2
))SSSSSS

•
e1

// •
a

// •

,

then again it was decomposable.

Example 4: This example illustrates an automaton

that satisfies DC1, DC2 and DC4, but it is

undecomposable as it does not fulfil DC3, since

new strings appear in P1(AS)||P2(AS) from the

interleaving of two strings in P1(AS) and P2(AS),
but they are not legal in AS . Consider the task

automaton AS : • e2

))SSSSSS

// •
e1 55kkkkkk

e2
))SSSSSS

a
��

•
a // •

• e1

55kkkkkk

•
e2

// •

with

E1 = {a, e1}, E2 = {a, e2}, leading to

P1(AS) ∼= •
a // •

// •
e1 55kkkkkk

a))SSSSSS

•

, P2(AS) ∼=

•
a // •

// •

e2 55kkkkkk

a))SSSSSS

•
e2

// •

and P1(AS)||P2(AS) ∼=

• •
e2oo •

aoo • e2

))SSSSSS

// •
e1iiSSSSSS

e2
uukkkkkk

e1 55kkkkkk

e2
))SSSSSS

a
��

•
a // •

• •
a

oo • e1

55kkkkkk

•
e2

// •

that

is not bisimilar to AS since its two left branches are newly

generated, while they do not appear in AS , although both

P1(AS) and P2(AS) are deterministic.

Example 5: This example illustrates an automaton

that satisfies DC1 and DC2, and DC3, but is

undecomposable as it does not fulfil DC4. Consider the

task automaton AS : /.-,()*+q1
a // /.-,()*+q2

b // /.-,()*+q3

// /.-,()*+q0

e1
55kkkkkk

a))SSSSSS

/.-,()*+q4

with E1 = {a, b, e1}, E2 = {a, b}, leading to

P1(AS): 76540123x1
a // 76540123x2

b // 76540123x3

// 76540123x0

e1 55kkkkkk

a))SSSSSS

76540123x4

,

P2(AS): /.-,()*+y1
b // /.-,()*+y2

// /.-,()*+y0

a 55kkkkkk

a))SSSSSS

/.-,()*+y3

, and

P1(AS)||P2(AS): /.-,()*+z1
a //

a))SSSSSS
/.-,()*+z2

b // /.-,()*+z3

// /.-,()*+z0

e1
55kkkkkk

a))SSSSSS
/.-,()*+z5

/.-,()*+z4

which is not bisimilar to AS . This task automaton

AS satisfies DC1 and DC2 as contains no

successive/adjacent transitions defined on different local

event sets. It does satisfies DC3 since any string in

T = {p1(S)|p2(S
′), p1(S

′)|p2(S)} (S and S′ are the top and

bottom strings in AS and share the first appearing common

event a ∈ E1 ∩ E2), appears in AS . But AS does not fulfil

DC4 since there does not exist a deterministic automaton

that bisimulates P2(AS). This results in the existence of

a transition on string e1a from z0 to z5 that stops in

P1(AS)||P2(AS), whereas, although e1a transits from q0 in

AS , it does not stop afterwards. This illustrate dissymmetry

in simulation relations between AS and P1(AS)||P2(AS).
Note that AS ≺ P1(AS)||P2(AS) with the simulation

relation R1 over all events in E, from all states in Q
into some states in Z , as R1 = {(q0, z0), (q1, z1), (q2, z2),
(q3, z3), (q4, z4)}. Moreover, P1(AS)||P2(AS) ≺ AS

with the simulation relation R2 over all events in

E, from all states in Z into some states in Q, as

R2 = {(z0, q0), (z1, q1), (z2, q2), (z3, q3), (z4, q4), (z5, q2)}.

Therefore, although AS ≺ P1(AS)||P2(AS) and

P1(AS)||P2(AS) ≺ AS , P1(AS)||P2(AS) ≇ AS , since

∃(z5, q2) ∈ R2, whereas (q2, z5) /∈ R1. If similar to P1(AS),

4195

P2(AS) also had a deterministic bisimilar automaton, then

for stopping of string e1a in P1(AS)||P2(AS), there was

a state in Q reachable from q0 by e1a and stopping there,

then we had ∀q ∈ Q, z ∈ Z : (q, z) ∈ R1 ⇔ (z, q) ∈ R2

and P1(AS)||P2(AS) ∼= AS .

B. Decomposability Condition for n agents

In practice, multi-agent systems are typically comprised of

many individual agents that work as a team. The proposed

procedure of decomposition can be generalized for more than

two agents, considering any n-tuple of successive/adjacent

private events from different private event sets. However,

this approach becomes rapidly complex as the number of

agents increases, as it should check n! possibilities for the

order of these events. To tackle this problem one way is to

use a hierarchical decomposition method to have only two

individual event sets at a time for partitioning: a local event

set; and the set of the rest of local event sets. In each step,

the algorithm seeks these two sets such that they satisfy

the decomposability conditions. This algorithm, however,

depends strongly on the order of the event sets that we

choose for decomposition, as it is elaborated in the following

example.

Example 6: The automata AS :

•
e2 // •

b // •
e3 // •

// •
a 55kkkkkk

e1
))SSSSSS

•
a // •

e2 // • b // •
e3 // •

with E = E1∪E2∪E3, E1 = {a, e1}, E2 = {a, b, e2}, E3 =

{b, e3}, P1(AS): // •
e1 //
a))SSSSSS •

a // •

•

, P2(AS) ∼=

// •
a // •

e2 // •
b // • and P3(AS) ∼= // •

b // •
e3 // • ,

is decomposable as As
∼= P1(AS)||P2(AS)||P3(AS) ∼=

P1(AS)||(P2(AS)||P3(AS)) ∼=
P3(AS)||(P1(AS)||P2(AS)) ∼= P2(AS)||(P1(AS)||P3(AS)).
In this example, PE2∪E3

(AS) ∼= P2(AS)||P3(AS) and

PE1∪E2
(AS) ∼= P1(AS)||P2(AS), but PE1∪E3

(AS) ≇

P1(AS)||P3(AS). This means that while choosing P1(AS)
or P3(AS) as the first set allows the hierarchical algorithm

to proceeds up to As
∼= P1(AS)||P2(AS)||P3(AS),

choosing P2(AS) will stuck the algorithm in the

second step as As
∼= P2(AS)||PE1∪E3

(AS), but

PE1∪E3
(AS) ≇ P1(AS)||P3(AS). Therefore, the algorithm

depends on the order of selections.

Next, as illustrated in the following example, the above

hierarchical decomposition method is only sufficient.

Example 7: The automata AS :

•
e2 // • b // •

e3 // • c // •
e5 // • d // •

// •

a
OO

e1 ��

•

•
a // •

e2 // • b // •
e3 // • c // •

e5 // •
d

OO

with E = E1 ∪ E2 ∪ E3, E1 = {a, c, d, e1, e5},

E2 = {a, b, d, e2}, E3 = {b, c, e3}, P1(AS):

•
c // •

e5 // • d // •
// •

a 55kkkkkk

e1
))SSSSSS

•
a // •

c // •
e5 // •

d // •

,

P2(AS) ∼= // •
a // •

e2 // •
b // •

d // • and

P3(AS) ∼= // •
b // •

e3 // •
c // • , is decomposable as

As
∼= P1(AS)||P2(AS)||P3(AS). However, PE2∪E3

(AS) ≇

P2(AS)||P3(AS), PE1∪E2
(AS) ≇ P1(AS)||P2(AS) and

PE1∪E3
(AS) ≇ P1(AS)||P3(AS). This means that although

AS is decomposable with respect to P1(AS), P2(AS) and

P3(AS), choosing any of local event sets E1, E2 and E3

passes the first stage of hierarchical decomposition, but the

algorithm will stuck at the second step.

Therefore, it would be very advantageous if we can find

a necessary and sufficient condition for decomposability

of a deterministic automaton with respect to an arbitrary

finite number of local event sets. The method would be

independent of the order of the local event sets and should

be able to check the decomposability condition by a direct

investigation. In the following, as the main result, we propose

such a necessary and sufficient condition for task automaton

decomposition for an arbitrary finite number of agents.

Theorem 1: A deterministic automaton AS =
(

Q, q0, E =
n
⋃

i=1

Ei, δ

)

is decomposable with respect

to parallel composition and natural projections

Pi : AS → Pi (AS), i = 1, ..., n such that AS
∼=

n

||
i=1

Pi (AS)

if and only if AS satisfies the following decomposability

conditions (DC): ∀e1, e2 ∈ E, q ∈ Q, S ∈ E∗, ∀Ei ∈
{E1, ..., En} , {e1, e2} 6⊂ Ei:

• DC1: [δ(q, e1)!∧δ(q, e2)!] ⇒ [δ(q, e1e2)!∧δ(q, e2e1)!];
• DC2: δ (q, e1e2S)! ⇔ δ (q, e2e1S)!;

• DC3: δ(q0,
n

|
i=1

pi (Si))! for Si ∈ L̃ (AS), where,

L̃ (AS) ⊆ L (AS) is the largest subset of L (AS)
such that ∀S ∈ L̃ (AS)∃S′ ∈ L̃ (AS) , ∃Ei, Ej ∈
{E1, ..., En} , i 6= j, pEi∩Ej

(S) and pEi∩Ej
(S′) start

with the same event, and

• DC4: ∀i ∈ {1, 2}, x, x1, x2 ∈ Qi, x1 6= x2, e ∈ Ei,

t ∈ E∗
i , δi(x, e) = x1, δi(x, e) = x2: δi(x1, t)! ⇔

δi(x2, t)!.

Proof: In order for AS
∼=

n

||
i=1

Pi (AS), from the

definition of bisimulation, it is required to have AS ≺
n

||
i=1

Pi (AS);
n

||
i=1

Pi (AS) ≺ AS , and the simulation relations

are symmetric. These requirements are provided by the

following three lemmas. Due to limitation in space, the

proofs for these lemmas are omitted from here, and will be

provided in the extended version of this result.

Firstly, in general,
n

||
i=1

Pi(AS) always simulates AS .

Lemma 2: For a deterministic automaton AS =
(

Q, q0, E =
n
⋃

i=1

Ei, δ

)

and natural projections

Pi : AS → Pi (AS), i = 1, ..., n, it always holds that

AS ≺
n

||
i=1

Pi (AS).

4196

This lemma shows that, in general,
n

||
i=1

Pi(AS) simulates

AS . The similarity of
n

||
i=1

Pi(AS) to AS , however, is not al-

ways true (see Examples 2 and 3), and needs some conditions

as stated in the following lemma.

Lemma 3: Consider a deterministic automaton AS =
(

Q, q0, E =
n
⋃

i=1

Ei, δ

)

and natural projections Pi : AS →

Pi (AS), i = 1, ..., n. Then,
n

||
i=1

Pi (AS) ≺ AS if and only if

DC1, DC2 and DC3 hold true for AS .

Next, we need to show that the two simulation relations

R1 (for AS ≺
n

||
i=1

Pi (AS)) and R2 (for
n

||
i=1

Pi (AS) ≺ AS)

defined by the above two lemmas are symmetric.

Lemma 4: Consider an automaton AS = (Q, q0, E =
n
∪

i=1
Ei, δ) with natural projections Pi : AS → Pi(AS),

i = 1, ..., n. If AS is deterministic, AS ≺
n

||
i=1

Pi(AS) with

the simulation relation R1 and
n

||
i=1

Pi(AS) ≺ AS with the

simulation relation R2, then R−1

1 = R2 (i.e., ∀q ∈ Q,

z ∈ Z: (z, q) ∈ R2 ⇔ (q, z) ∈ R1) if and only if DC4:

∀i ∈ {1, ..., n}, x, x1, x2 ∈ Qi, x1 6= x2, e ∈ Ei, t ∈ E∗
i ,

δi(x, e) = x1, δi(x, e) = x2: δi(x1, t)! ⇔ δi(x2, t)!.

Now, according to Definition 4, AS
∼=

n

||
i=1

Pi (AS) if and

only if AS ≺
n

||
i=1

Pi (AS) (that is always true due to Lemma

2),
n

||
i=1

Pi (AS) ≺ AS (that it is true if and only if DC1,

DC2 and DC3 are true, according to Lemma 3) and the

simulation relations are symmetric, i.e., R−1

1 = R2 (that

for a deterministic automaton AS , when AS ≺
n

||
i=1

Pi (AS)

with simulation relation R1 and
n

||
i=1

Pi (AS) ≺ AS with

simulation relation R2, due to Lemma 4, R−1
1 = R2 holds

true if and only if DC4 is satisfied). Therefore, AS
∼=

n

||
i=1

Pi (AS) if and only if DC1, DC2, DC3 and DC4 are

satisfied.

The decomposability conditions in Theorem 1 are illus-

trated in the following example.

Example 8: Consider the automaton in Example 6. We

denote the strings on the bottom and top branches of

AS as S1 and S2, respectively. Since {e1, a} ⊆ E1,

{a, e2} ⊆ E2, {e2, b} ⊆ E2, {b, e3} ⊆ E3, then DC1
and DC2 are satisfied. Moreover, S1, S2 contain a ∈
E1 ∩ E2, b ∈ E2 ∩ E3, where a appears as the first event

in both pE1∩E2
(S1) and pE1∩E2

(S2). Then, according to

DC3, following eight interleaving transitions are checked:

δ (q0, p1 (Si) |p2 (Sj) |p3 (Sk))!, i ∈ {1, 2}, j ∈ {1, 2},

k ∈ {1, 2}, i.e., DC3 is satisfied. Moreover, DC4 is also

satisfied as P1(AS), P2(AS) and P3(AS) are deterministic,

and hence, AS is decomposable.

IV. CONCLUSION

The paper proposed a formal method for automaton de-

composition, applicable in a top-down cooperative control

design for multi-agent systems. For the class of parallel dis-

tributed systems whose global specification is represented as

a deterministic automaton with given event distribution, we

provide a necessary and sufficient condition for decompos-

ability of an automaton with respect to parallel composition

and natural projections into an arbitrary finite number of local

event sets. Another research question is that when a task

automaton is not decomposable, then how one can modify

the event distribution to make the global task automaton

decomposable. Another future work can be investigation of

decomposability under event failure, namely, under what

conditions a decomposable task automaton preserves its

decomposability in spite of failure of some events.

REFERENCES

[1] M. Karimadini and H. Lin, “Guaranteed Global Performance Through
Local Coordinations”, Submitted to Automatica, 2010.

[2] P. U. Lima and L. M. Custdio, Multi-Robot Systems, Book Series Studies

in Computational Intelligence, Book Innovations in Robot, Mobility and
Control, Chapter 1, vol. 8, Springer Berlin / Heidelberg, 2005.

[3] V. Crespi, A. Galstyan and K. Lerman, “Top-down vs bottom-up
methodologies in multi-agent system design,” Journal: Autonomous

Robots, Publisher: Springer Netherlands, vol. 24 , no. 3, pp. 303 - 313,
April 2008.

[4] C. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” Proc. of the 14th annual conference on Computer Graphics,
vol. 21, no. 4, July 1987.

[5] M. G. Hinchey, J. L. Rash, W. F. Truszkowski, C. A. Rouff and
R. Sterrit, “Autonomous and autonomic swarms,” In Proc. The 2005

International Conf. on Software Engineering Research and Practice

(SERP’05), CSREA Press, Las Vegas, Nevada, USA, pp. 36-42, 27
June 2005.

[6] W. F. Truszkowski, M. G. Hinchey, J. L. Rash and C. A. Rouff,
“Autonomous and autonomic systems: A paradigm for future space
exploration missions,” IEEE Trans. on Systems, Man and Cybernetics,
Part C, 2006.

[7] C. A. Rouff, W. F. Truszkowski, J. L. Rash and M. G. Hinchey, “ A
survey of formal methods for intelligent swarms,” Technical Report

TM-2005-212779, NASA Goddard Space Flight Center, Greenbelt,
Maryland, 2005.

[8] A. Jadbabaie, J. Lin and A. S. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” IEEE Transaction on

Automatatic Control, vol. 48, no. 6, pp. 988C-1001, 2003.
[9] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins and G.

J. Pappas, “Symbolic planning and control of robot motion,” IEEE

Robotics and Automation Mag., special issue on Grand Challenges of
Robotics, vol. 14, no. 1, pp. 61-71, 2007.

[10] M. Kloetzer and C. Belta, “Temporal logic planning and control of
robotic swarms by hierarchical abstractions,” IEEE Trans. on Robotics,
vol. 23, no. 2, pp. 30-331, 2007.

[11] P. Tabuada and G. J. Pappas, “Linear time logic control of discrete-
time linear systems,” IEEE Trans. Automat. Contr., vol. 51, no. 12, pp.
1862-1877, 2006.

[12] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event

Systems, Springer, U.S.A, 2008.
[13] M. Mukund, “From global specifications to distributed implementa-

tions,” in B. Caillaud, P. Darondeau, L. Lavagno (Eds.), Synthesis and

Control of Discrete Event Systems, Kluwer , pp. 19-34, 2002.
[14] R. Morin, “Decompositions of asynchronous systems,” In CONCUR

98, LNCS 1466, pp. 549–564, Springer, 1998.
[15] I. Castellani, M. Mukund, P.S. Thiagarajan, “Synthesizing distributed

transition systems from global specification,” In: Pandu Rangan, C.,
Raman, V., Ramanujam, R. (eds.) FSTTCS 1999. LNCS, vol. 1738,
pp. 219–231, Springer, Heidelberg, 1999.

[16] R. Kumar and V. K. Garg, Modeling and Control of Logical Discrete

Event Systems. Kluwer Academic Publishers, Boston, 1995.

4197

