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Abstract— This paper considers the controllability problem ity, reachability and switching sequence design problem of
for switched linear systems. In particular, the structural control-  switched systems were deeply investigated.
lability of switched linear systems is investigated. The stictural Up to now, all the previous work mentioned above is

controllability of switched linear systems is a generalizion of .. . .
the traditional controllability concept for dynamical systems, based on the traditional controllability concept of swédh

and purely based on the graphic topologies among state and linear systems. In this paper, we propose a new notation for
input nodes. First, two kinds of graphic representations of the controllability of switched linear system: structucain-

switched linear systems are proposed. Second, several gfap trollability, which may present more practical significanc
theoretic characterizations of the structural controllability for Actually, when people try to obtain the models of physical

switched linear systems are presented based on these two ngw TR .
introduced graphs. Finally, the paper concludes with sevel processes, a more realistic situation is that most of system

illustrative examples and discussions of the results and fure ~ Parameter values are known only with the approximation
work. of some errors of measurement. Only the zero elements

that are fixed either by coordination or by the absence of
. INTRODUCTION physical connections between certain parts of the system ca
be known with 100 percent precision. Thus we will assume
Rere that all the elements of matrices of switched linear
systems to be fixed zeros or free parameters. Such kind of
itched linear systems would represent a large class of pa-

. o : . meter dependent switched linear systems. Furthermuze, t
and practical applications, switched linear systems haV(?/vitched linear system is said to be structurally contbdda

attracted considerable attention during the last decafie []; one can find a set of values for the free parameters such

[6]. Switching between d_lfferent subsystems or Ollfferenfhat the corresponding switched linear system is contstdla
controllers can greatly enrich the control strategies aag m .

. . . : " 'in the classical sense. For such structured systems, generi
accomplish certain control object which can not be achleveé]r

b tional d ical svst E le. it pravid operties including structural controllability have bestud-
y conventional dynamical Systems. i-or example, It praviage deeply and it turns out that properties generic properti

an effective mechanism to cope with highly complex SySterTmcluding structural controllability are true for almosll a

andt/ o(rj systgms W'thl Ia;%etungter;mgnes {4]I[I9 J [10][|1dl]310 .values of the parameters [18]-[22].That is one of the reason
sented good examples that Switched controliers cou peF)V'why this kind of structural controllability is so valuablac

a performance improvement over a fixed controller. Bes'deﬁttract our great interest

Switched linear systems also have promising applications ! No matter the traditional controllability or the structura

cpntrol of m_echamcal systems, aircrafts and satel_llteet _a'?:ontrollability of switched linear systems, all the result
kinds of multi-agents systems, such as unmanned air vehicl

. &chieved were algebraic conditions. However, it remains
(UAVs), autonomous underwater vehicles (AUVs) and so "jusive on what exactly is the graphical meaning of these

Muﬁhd V}’_mk has been done on tll'1e %Omrdlab'll'ltyb_?falgebraic conditions. Graphical conditions can help to un-
switched linear systems. For example, the controllabilitye giang how the graphic topologies of dynamical systems

and reachability for low-order switched linear systemsehavinﬂuence the corresponding generic properties, here espe-

begn presented in [.12]_[13]' Under the assumption that ﬂ1:“?ally for the structural controllability. This would be of
switching sequence is fixed, [14][15] introduced some suffi-

. giti g giti ¢ ditsbi great significance in many practical applications. For ex-
cient conditions and necessary conditions for contrdikgbi ample, in multi-agent systems, graphical interpretatifoms

of SW'tChe_q linear systems_. _Complete geometrlc _crlterra fOstructural controllability help us to understand the neaes
controllablllty and reachab_|l_|ty were establls_hed in []. information exchange between agents to make the whole
[17] studied the controllability of switched bilinear sgsts o5 controllable. Therefore, this motivates our pursait o
using Lie algebraic technique. In [5]-{8] the controllabil illuminating the structural controllability of switchedhkar

. o . i systems from a graph theoretical point of view. In this paper
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As a special class of hybrid control systems, basically,
switched linear system consists of several linear subsyste
and a rule that orchestrates the switching among them. D
to the significant importance in both theoretical researc



with switching topology is structurally controllable if dn Uu; T, Tp—1 g 1

only if the union graph is connected. © 0 © ©
The outline of this paper is as follows: In Section II, we
introduce some basic preliminaries, followed by strudtura Fig. 1. One stem in one directed graph

controllability study in Section Ill, where several graphi
necessary and/or sufficient conditions for the structuoalc
trollability are given. In Section IV, some examples are
presented to illustrate the theoretical results. Finatme
concluding remarks are drawn in the paper.

Il. PRELIMINARIES AND PROBLEM FORMULATION

A. Graph Theory Preliminaries
Consider a linear control system: Fig. 2. One bud in one directed graph

i = Ax(t) + Bu(t) @)

wherez(t) € R® andu(t) € R”. The matricesd and B
are structured matrices, which means that their elemeats ar
either fixed zeros or independent free parameters. u; x T2 Al
The graphic representation of the pait, (B) is described Tp_1
as follows: Consider one directed graghwith N vertices
consisting of a vertex sé&f = {v,v9,...,vny} and an edge Tq n—3
setZ = {ei,es,...,ens}, Which are the interconnection
links among the vertices. The vertex 3etconsists of node Ts
setsX = {x1,x2,...,2,}, Which is calledstate nodes set Fig. 3. One cactus in one directed graph
andi = {uy,us,...,u,}, which is calledinput nodes set.
Place an oriented edge;, z;) (an arrow going from node
z; to nodex;) of weight a;; if and only if the (4, j) entry B. Switched Linear System, Controllability and Structural

of A is a free parameter . Similarly, place an oriented edgeontrollability

(zi,u;) of weightb,; if and only if b;; is a free parameter |, general, a switched linear system is composed of a
of B. This directed grapl¢/ is called the graph of the pair ¢yl of subsystems and a rule that governs the switching

T3

(4, B) and denoted byi(4, B). _ o among them, and is mathematically described by
For any oriented edge, one node is called the initial (termi-
nal) node of the edge if the oriented edge starts (ends) with i(t) = Agz(t) + Bou(t), 2)
this node. An alternating sequence of distinct vertices and
oriented edges in the graghis called apath Furthermore, wherez € R"™ are the statesyr, € R™, k = 1,...,m

a path whose initial node is 1 is called astem Generally, are piecewise continuous input,is the control signal and
a node (other than the input nodes) is calledghaccessible a piecewise constant signal taking value from an index
if and only if there is no possibility of reaching this nodeset M = {1,...,m}. Suppose that there am subsys-
through any stem of the gragh tems (4;,B;), i € {1,...,m}. Moreover, o(t)= i im-
In the directed graplf(A, B), a bud is an elementary plies that theith subsystem(A;, B;) is activated. Given
cycle in X with an an additional edge that ends, but notr switching sequence : [t,,t;] — M, we refer to the
begins, in a vertex of the cycle. The begin vertex of thsequencety,t1,...,ts—1 With ¢ < t1 < -+ < tg1
edge is then also said to be the begin vertex of the bud. # switching time sequence, and the sequem@g) =
cactus is a subgraph that is defined as follows: A cactus ig,o(t1) = 41,---,0(ts—1) = is—1 as switching index
is either a stem, or is obtained from a smaller cagiysto sequence. Leth; := t;41 — ¢, ¢ = 0,1,...,5 — 1,
which a bud has been added that is vertex disjoint fggm and ¢t; := t;. We denote a switching sequence by=
apart from the begin vertex of the bud, which can be any(io, ho), (i1, h1), ..., (ts—1, hs—1)}.
vertex of pr, except for the last vertex of the stem that is Definition 1. A nonzero stater € R" is controllable,
contained ing/. if there exist a switching sequenee and inputu(t) such
Consider one vertex sef formed by the nodes from that z(0) = = andx(t;) = 0. Switched linear system (2)
the input nodes sef’ and determine another vertex setis said to be (completely) controllable if any nonzero state
T'(S), which contains all the nodes that has an oriented edgeis controllable; A nonzero state € R" is reachable, if
pointing to any vertex irt. Then the graply (A, B) contains there exist a switching sequengeand inputu(t) such that
a ‘dilation’ if and only if there is a sefS of k£ nodes in the z(0) = 0 and z(t;) = z. Switched linear system (2) is
vertex set of the graph such that there are no morethah said to be (completely) reachable if any nonzero staie
nodes inT'(5)[18]. reachable.



In [3], it is proved that the controllable set and reachable Notation 1. The switched linear system (4) can be rep-
set are always identical and here we use controllability teesented by a union digraph, defined as a flow struafure
represent. Mathematically,G is defined as

For the controllability of switched linear system, one
matrix condition has been given in [3]: G Ug2 Ug3 U - 'Ugm =M UV2 UV?’ e

Lemma 1([3]) If the matrix: UV U JZs ... Zm}
[B1, B2, Bs, ..., B, For the union grapl@, the vertex set is the same with the
A1By,A3By, A3By, ..., Ay B, vertex set of every subgragh. The edge set of equals to

() the union of the edge sets of the subgraphs.

Remark 1. Actually, it turns out that the union graph
is the representation of the linear system:

(A1 + A2+ Az +...+ Ay, Bi+ Bo+ B3 +... + Bp).

To derive one of our main results for the structural
controllability problem, a new notation is proposed here:

cey

APTIBy, AQAY 2By, . AYAT 2By, AT B,

has full row rankn, the switched linear system (2) is
controllable, and vice versa.
This matrix is called the controllability matrix of the ., ... ..°. graph.

corresponding switched linear system (2). __ Notation 2. The switched linear system (4) can be repre-
This paper mainly focuses on the structural controllabilit goteq by a colored union digraph, defined as a flow structure

of switched linear systems and here all the matrix pairg jqenified according to difference with union graghFor

(Ai; Bi),i € M consist of free parameters and zero eleg ihe vertex set is also the same with the vertex set of every

ments. Consequently: subgraphy;. However the the edge set 6fis no longer the
Definition 2. The switched linear system (2) is structurallyine union of the edge sets of the subgraphs. Different colors

controllable if after assigning values to the parametetbén 4,0 assigned to the edges from different subgraphs, then all

matrices(4;, Bi], i € {L,...,m}, there exists a switched of them are put in the colored union graph without deleting
linear system which is controllable in the usual sense. any edges. Nowi actually has multi edges between any two
Consequently: vertices with different colors and other edgesg@ncoming

Lemma 2. If the controllability matrix (3) hasg-rank  from different subgraphs also have different colors.
n, which is the maximum rank achievable by a matrix as |n the following discussion, the notations of union graph
a function of the free parameters, then the switched line@r and colored union grapf are employed to propose the
system (2) is structurally controllable. necessary and the sufficient conditions for the structural

controllability.
IIl. STRUCTURAL CONTROLLABILITY

. . B. Main Result Structural Controllabilit
A. Union Graph and Colored Union Graph ain resu S on_ ructural ~-ontroflabrity N
Before considering the structural controllability of

Here, Consider a switched linear system: switched linear system (4), we first introduce two definiion
for linear system which were proposed in [18]:
Definition 3.(Definition in [18]) The pair(A4, B) is said

() = Aoz(t) + Bou(t), “) to be reducible or have form | if they can be written in the
wherez € R™ are the statesy, € R™, k = 1,...,m are following form:
piecewise continuous input; € {1,...,m}. The elements Ay 0 0
in every subsystem matrix pait4;, B;) are independent A= { Aoy Ao ] B = { Boy } ) (5)

parameters or fixed zeros. Usk with vertex setV; and

edge sefZ; to represent the underlaying graph of subsyster\r,1vhereA11 € RPXP | Ay, € RPIXP A,y € R(1—P)x(n—p)
(4;, B;). Notice that here thé;, i € {1,...,m} may have _  p " R(1—p)xr ’

different dimensions. However, fortunately, if we add zero Rer?fark 2 When.ever the matrix paifA, B) is in form
columns to.Bi mgtncgs to make all thEBi matrices .have I, the system is structurally uncontrollable and meanwhile
the same dimension, it turns out that it makes no d|fferenqﬂe controllability matrix

on the controllability properties with the original switeth

linear systems (4), and in the following discussion, it also

has no influence on building the union graph and the colorfed Q= [B, AB,..., A”‘lB} ,

union graph. Then here, without loss of generality, g i h t least hich is identicall ‘

i €{1,...,m} are assumed to have the same dimension ar‘ﬂ?l now have at least one row which Is ldentically zero for
parameter values.

all the results in this paper hold for the situations that thé o T . . .
B, matrices have different dimensions. Definition 4. (Deflnmon in [18]_) Th_e palr(A,B)_ls said

As to the whole switched system, one kind of the repret-o be of form Il if they can be written in the following form:
sentation graph, which is called union graph, is defined as (A, B] = [ P } ©6)
follows: EE R I



the matrix

where P, € R(n=k)x(ntr) = p e REx(n+7) with no more
than k — 1 nonzero columns (all the other columns Bf [Bi+ B2+ ...+ B,
have only fixed zero entries). ABi+ABy1 + ...+ ApnB1 + A1 By + A B

For the structural controllability and its graphic intezpr +...+AnBo+ ...+ A1By, + AsByy ...+ A B,
tation of a linear systeniA, B), the following results have
been proved in [18]-[21]:

Theorem 1([18]-[21]) For a linear system A, B), the
following several statements are equivalent.

gee ey

APIB) + A ATT2By ...+ AV B,

has full rankn. Next, we add some column vectors to the

a) The pair(4, B) is structurally controllable. above matrix and get
b) i)[A, B] is irreducible or not of form |
ii) [A, B] is not of form Il or g-rankA4, B] = n [Bi+ Bz + ...+ Bm,Bs, ..., Bm,
c) i)There is no nonaccessible nodedfA, B) A1B1+AsB1+...+A,,B1 + A1By + A3 B>
iiThere is no ‘dilation’ inG(A, B). o+ AuBos+ ...+ ABy + AsByy + ...+ Ay By,

d) There exists a cacti which spa@§A, B), where cacti

is a set of mutually disjoint cactus. AsBrs- s Am B

This theorem proposed interesting graphic conditions for =~ "’
structural controllability of linear systems and reveatbdt ATTIB+ A2 AT TP By A+ AALTEB
the structural controllability is totally determined byeth +A’;;1Bm,A2A?*QBl,...,AlA’;l‘QBl,...,AZ[le].
underlaying graph topology. However, how about in switched
linear systems? According themma 2 once we impose  This matrix still have n linear independent col-
proper scalars for the parameters of the system matrisnn vectors, so it has full row rank. Next, subtract
(A;, B;) to satisfy the full rank condition, the switched linearBz, Bs, . .., By, from By + B + B3 + ... + B,y,; subtract
system (4) is structurally controllable. However, thisyonl A2B1, A3Bi, ..., Ay By, from A1 By + A2 By + A3Br +
proposed an algebraic condition. Can we still find some.. + 4»,B1 + ... + A1 By, + ... + A, B, and subtract
kinds of graph which can totally determine the structurallo A} >Bi, ..., A1A% 2By, ..., A% 1B, from AT ™' By +
controllability properties of switched linear systems?eTh A2A} >By + ...+ A A% 2By + ...+ A% ! B,,. Because
following results will answer this question and providethis column fundamental transformation will not change the
several graphic interpretations for structural conttully — matrix rank, the matrix still has full row rank. Now the

of switched linear systems. matrix becomes
The following is our first main result, which is actually one[B1, B2, , - - ., B,
graphic sufficient condition for the structural controflap ~ A1B1, A2B1,..., An By,

of switched linear systems: e . , )
Theorem 2.(Sufficient Condition) The switched linear AT Bi, A2AY "By, ... . AyAT By, ..., A7 B,

system (4) with graphic topologie8;, i € {1,...,m} is which is the controllability matrix for switched linear
structurally controllable if the union graph is spanned by systems (4) and has full row ramk Therefore, the switched
a cacti or equivalentlyg satisfies: linear system is controllable and therefore structuratin-c

i) There is no nonaccessible nodedn _troIIabIe. And finally, we get that if the union_grap@

ii) There is no ‘dilation’ ing. is spann_ed_ by a c_actl or_has no nonacc_essmle and no

‘dilation’ in it, the switched linear system (4) is strucally

Proof: Here, the union grapl: G(A:,B1)JG(A2,B2)  controllable. W
UG(4s, Bs)U...UG(Am, Bm) is spanned by a cacti of  ag 5 consequence of this theorem, another sufficient
satisfies the two conditions mentioned in the theorem. Agsondition can be described as follows:
cording toRemark landTheorem 1the corresponding linear
system(A4; + A + ... + Ay Bi + Bo + ... + By,) IS
structurally controllable. Then there exist some scalars f
the parameters in thel; and B; matrices that make the
controllability matrix

Corollary 1.(Sufficient Condition) The switched linear
system (4) with graphic topologieg;, i € {1,...,m} is
structurally controllable if any subgragh is spanned by a
cacti or has no nonaccessible and no ‘dilation’ in it.

It is easy to obtain this result by noting that, by definition
[By + By + ...+ B, of unior(1j graphg, if ar;]y subgraphg;, i gbl{l,.a,m}dils

spanned by a cacti or has no nonaccessible and no ‘dilation’,
EAl A2t 4 An)(Brt Bat ..+ B, then the union grapl also has this kind of property.

2
Ar+ Ao+ ...+ Ap)(B1+ Ba+ ...+ Bi), Until now, the results are based on the union grgpbf
ey switched linear systems. Our following results are all base
(A1 +As+ ...+ An)" Y(By + By + ...+ Bn)), on the colored union grapg. Firstly, we will investigate

several graphic properties of union colored graph and their
has full row rankn. Expanding the matrix, it follows that relationship with the switched linear system matrices.



Lemma 3. There is no nonaccessible node in the coloredasily got that there i§-dilation in the colored union graph
union graphG of the switched linear system (4) if and only G if and only if matrix (7) in not of form II. W
if the following matrix Before we going further to give another algebra explana-
tion of S-dilation, one definition and theorem proposed in
[ A+ Az + A+ Am, Br+ Ba+ By + - + B [20] must be introduced first: Prop
is irreducible or not of form |I. Definition 6.(Definition 1 in [20]) A structuredn x m/
Proof: One node is accessible if and only if there is arin < m') matrix A is of form (t) for somet, 1 <t < n,
oriented path starting from one of the input nodes and endirigfor some k in the rangem’ —t < k < m/, A contains a
in this node. According to the definitions of the union graplzero submatrix of ordefn +m’ —t — k + 1) x k.
and colored union graph, it can be concluded that there is noTheorem 3(Theorem 1 in [20]) g-rank A =t
nonaccessible node in the colored union graph if and only i) for t = n if and only if A is not of form(n).
if there is no nonaccessible node in the union graph. And i) for 1 <t < n if and only if A is of form (¢ + 1) but
from remark 1 we know that the matrix representation of not of form (¢).

the union graph is Starting from the above definition and theorem, another
lemma is proposed here:

(Ai+ Ao Azt Ao, Bit Byt By 4+ B). Lemma 5. There is noS-dilation in the colored union
Then according téheorem dwhich talks about the structural graph G of switched linear system (4) if and only if the
controllability of linear systems, we can easily get thimtea ~ following matrix
proved. B

Definition 5. In the colored union grapfi, we propose one (A, Br, Az, Bas oo, Am, Bl ©)
new definition:S-dilation. ‘Dilation’ in the graph of linear has g-rankn.
systems was proposed in [18]. If we choose a vertexSset Proof: Necessity:If matrix (9) hasg-rank < n, from
formed by the noninput nodes and ©¢S) define the vertex theorem 3t follows that matrix (9) is of form(n). Then
set that any node iff'(S) has one edge pointing to one nodereferring todefinition 6 (9) must have a zero submatrix of
in S. If |T(S)| < |S|, then we say there is a dilation in theorder(n+m’—t—k+1) x k. Here,t can be chosen as then
graph. Now in the union color grapi¥(S)| is calculated as (9) has a zero submatrix of ordén’ — k + 1) x k. For this
the summation ofT;(S)| i € {1,...,m} in every subgraph. (m’—k+1) rows, there are onlym’ — k) nonzero columns.

If |T(S)| < |S|, we say there is &-dilation in the colored Consequently, matrix (9) is of form Il and bgmma 4 there
union graphg. is S-dilation in the colored union grap of switched linear

Based on this new graph property, we get this followingystem (4).
lemma: Sufficiency If there is S-dilation in the colored union

Lemma 4. There isS-dilation in the colored union graph graphg, by lemma 4 matrix (9) is of form I, then obvi-

G of switched linear system (4) if and only if the following ously P, in (9) can not achieve row rank equal foand
matrix furthermore, (9) can not hawgrank =n. W

[A1,B1,As, B, ..., A, By (7) Next is another main result of this paper, which is actually

one graphic necessary condition for the switched linear

is of form Il. It means that there exist some permutation ofystem (4) to be structurally controllable:
matrix pair(A;, B;) i € {1,...,m}, (7) can be written into:  Theorem 4.(Necessary Condition)f the switched linear
P system (4) with graphic representatigiisi € {1,...,m} is
Py ] (8) structurally controllable, the colored union graghshould
always satisfy the following two conditions:

i) there is no nonaccessible node in the colored union

graphg;

i) there is noS-dilation in the colored union grapB.

[AlaBlaA27BQa- --7AmaBm] = |:

whereP;, € RP** with no more tharp — 1 nonzero columns

(all the other columns of; have only fixed zero entries).
Proof: From [18][19] ortheorem 1 it is known that in _ ) ) -

linear systems, there is no ‘dilation’ in the correspondin(]; Proof: (i) If there exist nonaccessible nodes ¢h by

graph if and only if the matrix paitA, B] can not be of form 1€mma 3 the matrix

Il or has_g_-rankn. Frqm the explanation of this_ result in [18] [Ai+ Ay + As+---+ Ay, By + By + Bs + - - + By

and definition 4 P, in [A, B] hasp rows, which actually ) N

represent the) nodes of node se§ (defined for dilation) IS reducible or of form I. It follows that the controllabifit

and each nonzero element of each row Rif represents Matrix

that there is one node pointing to the node presented by [By + B2+ ...+ By,

_thi?hrow. Thberefofre, tge nurr_1bt<_er 01; nonzero C(()jlugnsf’ig (A1 + As + ...+ Ap)(B1 + By + ...+ By),

is the number of nodes pointing to some nodeSinan 9

actually equals tg7'(S)|. Furthermore, by the definition (Ar+ Az 4. 4 Am)"(Bi+ Bo + .. + Br),

of S-dilation, |T(S)| is now the summation ofT;(S)| R

i € {1,...,m} in every subgraph. Consequently, it can be  (A; + Ay + ...+ A,))" *(By + By + ...+ By)],



always has at least one row that is identically zemmark In [23], the multi-agent system with switching topology
2). We can know that every component of the matrix, suclvas modeled as follows:

as B;, A;B;j and A}A}B, has the same row always to be 7 A B 2 0
i - . . — aq; aq; + (11)
zero. As a result, the controllability matrix P 0 0 2 un
[B1, Ba, Bs, ..., B, wherei € {1,...,m}, Ay, € RV"DVXN=D and B,,. €
A1By,A3By,A3By, ..., AnBn, RWV-1x1 gre both sub-matrices of the corresponding graph

. Laplacian matrix L. The matrix A,,, reflects the inter-
_ _ _ _ connection among followers, and the column vecky,,
AVIBy A AY 2By, AL ALTEBy, . AT B : ' e
1B AT B AT B A B, represents the relation between followers and the leader
always has one zero row and can not achieve full rank under corresponding subsystems. Since the communication
Therefore, the switched linear system (4) is not contrédlab topologies among agents are time-varying, so the matrices

and not structurally controllable. ~ A.q and B, are also varying as a function of time.
(ii) If there isS-dilation in the colored union grapf of  Therefore, the dynamical system described in (11) can be
switched linear systems, bgmma 5 the matrix naturally modeled as a switched linear system.
For each subsystem of this special switched linear system,

A, Ay, As, ... A, B1,B2,B3,...,B,, . . .
(A1, A2, 43, Am, Br, Ba, By, - Bin] the matrix pair(Aagi, Bagi), i € {1,...,m} can be repre-

has g-rank less than. It means that we can not find any sented by a digrapt;. For the whole multi-agent system,
set of parameters that can make this matrix has full rank a union graphG’ was also defined in the same way with it
Then for the controllability matrix of switched linear sgst  is defined this paper. Then it turns out that the multi-agent
(4): system with switching topology is structurally controliab
(Bi,..., B, AiB1,..., AnBi, ..., A1Bms ... Ay Bon, if an_d o_nIy if the u_rlioq graphG of the underlaying com-
A28 A AB A2 A AB munlcatlon_ topologies is conqectgd. It means that we can
121 ey Bm LD - -5 £15ms - - Sm A1 Dms - - always assign proper communication weights between agents
APIBy, . ARAYTEBy, AL AT B, AT B, to make this whole multi-agent system controllable if and
(10) only if the connectivity of union graph is kept.

we know that the columns space of (10) is the summation of Multl-agﬁ_nthsyste_m IS a spemgl case of switched I|_nea|r
every component A’ A7B,’s column space and obviously system, which requires structured symmetry (symmetric el-

i .
the column space oﬂiAg‘-BT is contained in the column €Ments are free parameters or zeros simultaneously) and

space ofA,. It follows that the column space of control-free parameters on diagonal elements. For this specia) case

lability matrix (10) is contained in the column space ofV€ can get graphic_ necessary and sufficient condition for
[A1, A2, As, ..., Ap, B1, Ba, Bs, ..., By]. Then it follows structural controllabilty.

that the g-rank of (10) is less tham. Consequently the IV. NUMERICAL EXAMPLES

switched linear system (4) is not structurally controléalill

C. Structural Controllability of Multi-Agent Systems a®th
Special Case of Switched Linear Systems

Two graphic sufficient conditions and one graphic neces-
sary condition have been proposed in the above discussion.
The union graph does not differentiate the information flows
from different subsystems. But in colored union graph, the
information which subsystems specific edges come from is
provided. It turns out that the conditions based on the union (a) (b) (c)
graphg are much stronger than the conditions based on the Fig. 4. Switched linear system with two subsystems
colored union graptg. If there is no nonaccessible node
and no ‘dilation’ in G, the colored union graplgy does To illustrate our main results, we consider here several
not have nonaccessible node astdlilation. The sufficient switched linear systems with two subsystems and single
conditions based on union graph will be illustrated thaytheinput. Switched linear system 1 is described by the graphs
are not necessary conditions for the switched linear systerim Fig. 4(a)-(b), where thé node represent the input and the
to be structurally controllable. Furthermore, We still dee rest are state nodes. Overlay the subgraphs together to get
one complete necessary and sufficient condition for strattu the union graphg of this example shown in Fig. 4 (c). It
controllability of switched linear systems. Fortunatedg, a turns out that the union graph of the switched system has no
special case of switched linear systems, our previous work monaccessible node and no ‘dilation’ (actually a cactuy). B
multi-agent systems with switching topology [23], in whichone of our main result¥heorem 2we get that the switched
very good graphic necessary and sufficient condition wdmear system is structurally controllable.
introduced, gives us perspective to find such kind of graphic Next, we will check the rank condition of this switched
condition for general switched linear systems. system to see whether it is structurally controllable.

1o 1 1

20e—0() o0 o0



From Fig. 4, we can compute the system matrices from 8 8 0 A3

subgraph of each subsystem to be: Ay = A2 |, Ba=| O
0 0 O 0
0 0 0 I
A = [ 0 0 } , Bi= { A } . we can easily find three nonzero column vectors (there
! also other nonzero columns) in the controllability matiax f
0 0 A3 this switched linear system:
A=1g 5| B0 |-
2 0 A3 0
According toLemma 1 we have the controllability matrix 0 |, 0 |, A1 e
for this switched linear system here: A 0 0
[B1, Bs, A1 By, Ay By, Ay Bo, A3 Bs]. (12) We impose all the parameters scalar 1. It follows that

these three column vectors are linear independent. As a
Apply (12) to this example, we can easily find there argesult, the matrix has full row rank and bfemma 1,

only three nonzero column vectors here: the switched linear system is controllable and therefore
structurally controllable. Then it follows that the conalit

[ 0 ] , { A3 } ) [ 0 ] ) in Theorem s not necessary for the switched linear system
M 0 Atz to be structurally controllable. Besides, this switchetkdr

We impose all the parameters scalar 1.1t turns out that ttgystem is structurally controllable and here the coloredmun
three column vectors have rank 2. As a result, the matrix h&saphg has no nonaccessible node and$wdilation.

full row rank 2. Finally it shows that if the union graghis The last example is presented to illustrate the necessary
spanned by a cacti or with no nonaccessible and no ‘dilatioreondition intheorem 4with colored union graph. The rep-
the switched linear system is structurally controllable. ~ resentation subgraph for each subsystem is depicted in Fig.

For the next example, we still consider a switched linea®(a)-(b).
system with two subsystems described by the graphs in Fig.
5(a)-(b). Overlay the subgraphs together to get the union

graphg of this example shown in Fig. 5 (c). Easily we can 1 1 1

see that if node 1 and 3 are chosen to comp®sad now

T(S) only has node 0, therefore, there is ‘dilation’ in the 20 2 2

union graphG. The colored union grap@ is shown in Fig. \

5 (d), where the thick lines represent the edges coming from 30+————°0 30 °0 3 °0
subgraph (b). It turns out that the colored union grgpimas (a) (b) (c)

no nonaccessilbe node and Aed:lation.

) Fig. 6. Another switched linear systems with two subsystems
Fig. 6 (c) is the colored union graph of this switched linear

Io 1 1 system and the thicklines represent the edges coming from
the second subsystem. If we choose node 1,2,3 as the nodes
20 QI 21 in S, then the sef’(S) contains 2 nodes (two 0 nodes from
different subgraphs) anfd’(S)| < |S]. It follows that there
3o+—00 3 °0 3 °0 is S-dilation in the colored union grapf and according to
(a) (b) (¢) theorem 4 the corresponding switched linear system is not
1 structurally controllable.
Similarly, we need to check the controllability matrix for
2 this switched linear system and we write the system matrices
I first:
3 0 [0 0 0] [ ]
(d) Ay=10 0 0], Bi=1| 0
Fig. 5. Another switched linear systems with two subsystems 0O 0 O A
Next, we will check the rank condition of this switched "0 0 0 M\ T
. oo 3
linear system to see whether it is structurally controtbadnl A=10 0 0 B, — | A
2 ) 2 4
not. _ _ 00 0 0
From Fig. 5, we can compute the system matrices of - - - -
subgraphs of corresponding subsystems to be: Compute the controllability matrix for this example:
000 0 [ A A 0 ... 0
Aj=10 0 0|, Bp=| 0 1. 0 N O ... 0
0 00 A1 [ A2 0 0 ... 0




Obviously, no mater what kind of values are assigned tqs]
the free parameters, the controllability matrix always has
rank less than 3. Consequently, the switched linear syster,
is not controllable and not structural controllable ands thi
finally illustrate our result itheorem 4

From the above several examples, we illustrate omﬁo]
main results and present an intuitive interpretation that t
switched linear system is structurally controllable if tirdon ~ [11]
graphg is spanned by a cacti (or no nonaccessible node and
no ‘dilation’) and the colored union graph should have n2]
nonaccessible nodes and Sealilation if the switched linear
system is structurally controllable.

13
V. CONCLUSIONS AND FUTURE WORK il

In this paper, a more ‘practical’ concept of controllalyilit [14]
structural controllability for switched linear systemssha
been investigated. Combining the knowledge of the literg;s;
ture of switched linear systems and graph theory, several
graphic necessary and graphic sufficient conditions for the
structurally controllability of switched linear systemave [1¢]
been proposed. It was shown that switched linear system is
structurally controllable if the union graph is spanned by

. . o [17]
a cacti (or no nonaccessible node and no ‘dilation’) and the
colored union graph should have no nonaccessible node and
no S-dilation if the switched linear system is structurally[18]
controllable. These graphic interpretations provide usebe [1g]
understanding on how the graphic topologies of switched
linear systems will influence or determine the structurdf%
controllability of switched linear systems and therefore,
would be of great practical significance for different kindg21]
of physical systems or processes.

Although we get several graphic interpretations for the
structural controllability of switched linear systems, @d
graphic necessary and sufficient condition still needs o
further study. This shows us a great perspective than we can
design the switching algorithm to make the switched linear
system structurally controllable conveniently just makin
sure some properties of the corresponding graph (union or
colored union graph) are kept during the switching process.
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