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Abstract— Bisimulation relation as a well known equivalence
relation has been successfully applied to computer science
and control theory. In our previous work, we proposed the
existence of bisimilarity supervisor by introducing simulation-
based controllability. As a continuation, this paper deals with
the computation for the supremal simulation-based controllable
subautomata with respect to given specifications by lattice
theory. In order to achieve the supremal solution, two monotone
operators, namely simulation operator and controllable oper-
ator, are built upon the established complete lattice, and then
we set up the inequalities, whose solutions are simulation-based
controllable state pairs. In particular, a sufficient condition is
provided to guarantee the existence of supremal simulation-
based controllable subautomata. Furthermore, an algorithm is
presented for the computation of such subautomata.

I. INTRODUCTION

Bisimulation relation was introduced in [1] as a behavioral
equivalence relationship between dynamical systems. It has
been successfully applied to computer science and control
theory, see e.g., [2], [5]. Bisimulation relation is stronger
than language equivalence because the languages generated
by two bisimilar systems are equal to each other, but the
systems possessing the same language might not be bisimilar.
Therefore, the works on bisimilarity control, which aims to
achieve the bisimulation relation between controlled system
and specification, have attracted lots of attentions these years.

Komenda and Schuppen [3] [4] proposed a coalgebra to
generalize the bisimulation relation to control discrete event
systems (DESs) under partial observation and decentralized
supervisory control. In [5] [7] [6], controller synthesis is
investigated for the abstracted system which is bisimilar to
the original system in the form of linear system, nonlinear
system or hybrid system respectively. In Zhou’s work [11]
[12], a small model theorem is established to show that the
supervisor which is to execute the control action to ensure
the bisimulation relation exists if and only if it exists over the
power set of Cartesian product of system and specification
state spaces.

In our previous work, we studied the bisimilarity control
of DESs from a different aspect. Plant and specification are
described as nondeterministic automata, and a supervisor is
to execute the control action so that the controlled system
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is bisimilar to the specification. We extended the language
controllability to simulation-based controllability, which is
under the framework of automata rather than languages.
This simulation-based controllability is much stronger than
the language controllability [8] because simulation-based
controllability of specification implies the controllability of
its generated language, but the reverse does not hold. Fur-
thermore, we showed that the supervisor exists if and only if
the specification is simulation-based controllable. However,
in most situations, the given specification is usually not
simulation-based controllable. Then, an interesting question
arose naturally is whether there exists a sub-specification that
is simulation-based controllable. If so, can one get an optimal
sub-specification in the sense of maximum permissive. To
deal with this problem, we will investigate the computation
of supremal simulation-based controllable subautomata with
respect to given specification.

In this paper, we will reply on lattice theory to solve this
problem. First, we establish a complete lattice, following
two operators: simulation operator and controllable operator,
whose output should meet the simulation condition and the
controllable condition separately. After constructing these
two operators, an iterative algorithm is provided to calculate
the supremal simulation state pairs by applying simulation
operator. Meanwhile, the supremal controllable state pairs
can be calculated by the controllable operator. Moreover, we
can obtain the simulation-based controllable state pairs by
combing the inequalities described by these two operators.
Then, a sufficient condition is proposed to guarantee the ex-
istence of the supremal simulation-based controllable subau-
tomta according to the lattice theory [9]. Finally, an algorithm
is provided for computing such supremal simulation-based
controllable subautomata.

The rest of the paper is organized as follows. Section 2
gives notation and preliminaries. Section 3 studies method
of computing the supremal simulation-based controllable
subautomata. An illustrative example is provided in Section
4. The paper concludes with section 5.

II. PRELIMINARIES

In this section, some preliminaries concerning automata,
bisimulation relation and lattice theory are introduced.
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A. Discrete Event System

A DES is modelled as an automaton G = (X,Σ, x0, α, Xm),
where X is the set of states, Σ is finite set of events, α :
X × Σ→ 2X is the transition function, x0 is the initial state,
Xm ⊆ X is the set of marked states.

The event set can be partition into Σ = Σuc∪Σc, where Σuc

is the set of uncontrollable events and Σc is the controllable
event set. Σ∗ denotes the set of all finite strings over Σ,
including the empty string ε. The closed language generated
by G is defined as L(G) = {s ∈ Σ∗ | α(x0, s) is defined }.
Besides, Γ : X → 2Σ is the active function; Γ(x) is the active
event set of G at state x.

Next, we will introduce the accessible operator [8], which
is used to remove the states, which are not accessible from
the initial state.

Definition 1: Given an automaton G = (X,Σ, x0, α, Xm),
the accessible operator on G is defined as:

Ac(G) = (Xac,Σ, x0, αac, Xacm),

where Xac = {x ∈ X | x ∈ αac(x0, s), where s ∈ Σ∗ }, Xacm =

Xm ∩ Xac, αac = α | Xac × Σ→ Xac.
The notation α | Xac × Σ→ Xac means that α is restricted

to the smaller domain of the accessible states Xac. Besides,
the states which are not accessible from the initial state, are
not so practical in the real application. Thus, we can remove
these states by the accessible operator.

Then, we use bisimulation relation [12] to describe the
equivalence between automata as follows.

Definition 2: Let G1 = (X1,Σ, x01, α1, Xm1) and G2 =

(X2,Σ, x02, α2, Xm2) be two automata. G1 is said to be sim-
ulated by G2, denoted by G1 ⊆φ G2, if there is a binary
relation φ ⊆ X1 × X2 such that (x01, x02) ∈ φ and for each
(x1, x2) ∈ φ,

(1) x
′
1 ∈ α1(x1, σ), where σ ∈ Σ ⇒ ∃x

′
2 ∈ α2(x2, σ) such

that (x
′
1, x

′
2) ∈ φ.

(2) x1 ∈ Xm1, then x2 ∈ Xm2.
If G1 ⊆φ G2, G2 ⊆φ G1, and φ is symmetric, we have φ

is a bisimulation relation between G1 and G2, denoted by
G1 'φ G2. Moreover, G1 'φ G2 implies L(G1) = L(G2),
however, L(G1) = L(G2) may not imply G1 'φ G2.

In our earlier work [10], we extended classical language
controllability to simulation-based controllability, which can
guarantee the existence of supervisor such that there is a
bisimulation relation between controlled system and specifi-
cation.

Definition 3: Given a plant G = (X,Σ, x0, α, Xm) and a
specification R = (Q,Σ, q0, δ,Qm), R is simulation-based
controllable with respect to G and Σuc, if it satisfies:

(1) (Simulation Condition) There is a simulation relation
φ such that R ⊆φ G.

(2) (Controllable Condition) (∀ s ∈ L(R))(∀ q ∈ δ(q0, s))(∀
σ ∈ Σuc)[sσ ∈ L(G)⇒ δ(q, σ) , ∅].

The simulation-based controllability shows that, R is simu-
lated by G and for any uncontrollable event σ, if σ is defined
at a certain state of G reachable from the initial state x0 along
string s, then σ is also defined at all states of R which are
reachable from the initial state x0 along s [10].

Moreover, simulation-based controllability implies lan-
guage controllability, but the reverse does not hold.

B. Lattice Theory

Definition 4: Given Y ⊆ X, x ∈ X is said to be the
supremal of Y, if
• (upper bound): ∀ y ∈ Y: y ≤ x and
• (least upper bound): ∀ z ∈ X : [∀ y ∈ Y : y ≤ z] ⇒ [x
≤ z].

The notations supY and tY are used to denote the supre-
mal of Y.

Given Y ⊆ X, x ∈ X is said to be the infimal of Y, if
• (lower bound): ∀ y ∈ Y: x ≤ y and
• (greatest lower bound)∀ z ∈ X : [∀ y ∈ Y : z ≤ y] ⇒

[z ≤ x].
The notations infY and uY are used to denote the infimal

of Y.
Definition 5: The pair (X, ≤), where X is a set and ≤ is

a partial order over X, is called a partially ordered set or a
poset. The poset (X, ≤) is said to be a lattice if supY, infY
∈ X for any finite Y. If supY, infY ∈ X for arbitrary Y ⊆ X,
then (X, ≤) is called a complete lattice.

A poset may be a lattice, but it may have a set Y of infinite
size for which infY or supY may not exist. However, infY
and supY exist for any Y ⊆ X on a complete lattice.

Moreover, monotone functions and disjunctive functions
[9] are defined over a complete lattice (X,≤).

Definition 6: A function f : X → X is said to be monotone
if for any x, y ∈ X : [x ≤ y] ⇒ [f(x) ≤ f(y)].

Definition 7: A function f : X → X is said to be disjunc-
tive if for any Y ⊆ X : f(ty∈YY) = ty∈Y f (y).

Furthermore, the following lemmas are introduced to ob-
tain the fixed point of the system of inequalities.

Lemma 1: Consider the system of inequalities { fi(x) ≤
gi(x)}i≤n over a compete lattice (X, ≤). Let Y = {y ∈ X |
∀i ≤ n : fi(y) ≤ gi(y)} be the set of all solutions of the
system of inequalities and Y1 = {y ∈ X | h1(y) = y} be the
set of all fixed points of h1, where h1 = ui≤n f⊥i (gi(y)) and
f⊥i (gi(y)) is the supremal solution of fi(x) ≤ gi(x).

If fi is disjunctive and gi is monotone, then supY ∈ Y,
supY1 ∈ Y1, and supY = supY1.

Lemma 2: Consider the inequalities { fi(x) ≤ gi(x)}i≤n,Y =

{y ∈ X | ∀i ≤ n : fi(y) ≤ gi(y)}.
If fi is disjunctive and gi is monotone. Iterative compu-

tation y0 = supX, ∀k ≥ 0, yk+1 = h1(yk) until ym+1 = ym =

supY .
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III. SUPREMAL SIMULATION-BASED
CONTROLLABLE SUBAUTOMATA

In this section, we establish a complete lattice and then
construct simulation operator, controllable operator and the
inequalities of system over such complete lattice respectively.
Then, an algorithm is proposed for the computation of the
supremal simulation-based controllable subautomtata.

A. Complete Lattice

Definition 8: Given a plant G = (X,Σ, x0, α, Xm) and a
specification R = (Q,Σ, q0, δ,Qm), a poset is defined as
(2Q×X ,⊆).

Obviously, the power set lattice (2Q×X ,⊆) is a complete
lattice. In the next two subsections, we introduce several
operators defined over (2Q×X ,⊆).

B. Simulation Operator

Definition 9: The simulation operator is defined as a map-
ping:

Fs : 2Q×X → 2Q×X ,

for Z ⊆ Q × X, (q, x) ∈ Fs(Z) if the following conditions are
satisfied:

1. (q, x) ∈ Z.
2. q

′ ∈ δ(q, σ) ⇒ [∃x
′ ∈ δ(x, σ)] [(q

′
, x
′
) ∈ Z].

3. q ∈ Qm ⇒ x ∈ Xm.
Above definition of Fs(Z) is built upon the complete lattice

(2Q×X ,⊆), and it evolves from a similar operator in [13].
Proposition 1: If Z ⊆ Z

′
, then Fs(Z) ⊆ Fs(Z

′
).

Proof: For any (q, x) ∈ Fs(Z), by the definition of
Fs(Z), we obtain that: (1) (q, x) ∈ Z, because Z ⊆ Z

′
, we

have (q, x) ∈ Z
′
. (2) If q

′ ∈ δ(q, σ) in R, then there exists
x
′ ∈ δ(x, σ) in G such that (q

′
, x
′
) ∈ Z. As Z ⊆ Z

′
, we

get (q
′
, x
′
) ∈ Z

′
. Meanwhile, (q, x) also satisfies the third

condition in Fs(Z). Thus, (q, x) ∈ Fs(Z
′
).

The above proposition shows that Fs is monotone. More-
over, this monotonicity of Fs guarantees the existence of
supremal solution of inequality Z ⊆ Fs(Z) over the complete
lattice (2Q×X , ⊆).

Proposition 2: Given a plant G = (X,Σ, x0, α, Xm) and a
specification R = (Q,Σ, q0, δ,Qm), φ is a simulation relation
from R to G, if and only if φ ⊆ Fs(φ), and (q0, x0) ∈ φ.

Proof: (Necessity) Given a simulation relation φ such
that R ⊆φ G, thus, for any (q, x) ∈ φ, we have (1) (q0, x0) ∈ φ.
(2) For each (q, x) ∈ φ, if q

′ ∈ δ(q, σ) in R, there exits x
′ ∈

α(x, σ) in G such that (q
′
, x
′
) ∈ φ, where σ ∈ Σ. (3) If q ∈ Qm,

then x ∈ Xm. Therefore, we can get that (q, x) ∈ Fs(φ), i.e
φ ⊆ Fs(φ).

(Sufficiency) Suppose φ ⊆ Q×X and φ ⊆ Fs(φ), therefore,
for any (q, x) ∈ φ, we have (q,x) ∈ Fs(φ). Then, (q, x) satisfies
all the conditions of Fs(φ), those are, (1) For every q

′ ∈
δ(q, σ) in R, ∃x

′ ∈ α(x, σ) in G such that (q
′
, x
′
) ∈ φ. (2) If

q ∈ Qm, then x ∈ Xm. Furthermore, (q0, x0) ∈ φ, then φ is a
simulation relation from R and G.

By the definition of Fs(Z), we have already obtained
Fs(Z) ⊆ Z. If we also have Z ⊆ Fs(Z), Z is a fixed-point
of Fs(Z), i.e. Fs(Z) = Z. This fixed point is the supremal
solution of Z ⊆ Fs(Z) due to the monotonicity of Fs(Z).
Moreover, we could achieve the supremal solution by the
following iterative algorithm.

Theorem 1: Given a plant G = (X,Σ, x0, α, Xm) and a
specification R = (Q,Σ, q0, δ,Qm), the supremal simulation
relation is the maximal fixed-point Z of the operator Fs if
(q0, x0) ∈ Z, where Z ⊆ Q × X. Moreover,

Fs(Z) = lim
i→∞

F i
s(Q × X),

where F0
s (Q×X) = Q×X is defined to be the identity function,

and for each i ≥ 0, F i+1
s (Q × X) = Fs(F i

s(Q × X)).
Proof: (2Q×X ,⊆) is a complete lattice, and the op-

erator Fs(Z) is the monotone function over such lattice.
Thus, Z is the simulation relation if (q0, x0) ∈ Z by
proposition 2. Moreover, Fs(supZ) ⊆ supZ, therefore, we
obtain Fs(Fs(supZ)) ⊆ Fs(supZ) by the monotonicity of
Fs. Then, we have the decreasing chain {supZ, Fs(supZ),
Fs(Fs(supZ)), Fs(Fs(Fs(supZ))), ...}, where supZ = Q × X.
Then, we can obtain

Fs(Z) = in f {supZ, Fs(supZ), Fs(Fs(supZ))...}
= lim

i→∞
F i

s(supZ)

= lim
i→∞

F i
s(Q × X)

C. Controllable Operator

Definition 10: Given a plant G = (X,Σ, x0, α, Xm), for any
s ∈ L(G), we define a nondeterministic state set Xs = {x ∈
X | x ∈ α(x0, s)}. Moreover, for any x ∈ Xs, we define the
nondeterministic active event set as Γs(x) = ∪x1∈XsΓ(x1).

We could obtain all the states which are reachable from
x0 with the same string s by the nondeterministic state set.
Besides, the nondeterministic active event set is the union
of the active event set of the states in the corresponding
nondeterministic state set. In particular, if an uncontrollable
event is included in the active event set of any state in
nondeterministic state set Xs, it will also contain in the set
Γs(x) for all x ∈ Xs.

Definition 11: Given a plant G = (X,Σ, x0, α, Xm) and
a specification R = (Q,Σ, q0, δ,Qm), the simulation-based
controllable product of R and G is the automaton:

R ×sc G = Ac(Q × X ∪ {(qm, xm)},Σ, q0 × x0, γsc,Qm × Xm)
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where

γsc((q, x), σ) =


(qm, xm) σ ∈ (Σuc ∩ (Γs(x) − Γ(q));

(δ(q, σ), α(x, σ)) σ ∈ Γ(x) ∩ Γ(q);
unde f ined otherwise.

According to the definition of simulation-based control-
lable product, a transition that leads to the new states through
event σ is allowed if the active event sets of this state pair
(q, x) share the event σ. Besides, there will be a transition to
the (qm, xm) if σ ∈ (Σuc ∩ (Γs(x) − Γ(q)). Moreover, the state
pairs that are not reachable from (q0, x0) should be removed
by the accessible operator.

Definition 12: The controllable operator is defined as a
mapping:

Fc : 2Q×X → 2Q×X ,

for some Z ⊆ Q×X, (q, x) ∈ Fc(Z), if the following condition
is satisfied:

(q, x) < Qd × X,Qd = ∪σ∈Σuc Qdσ,

where for any σ ∈ Σuc, Qdσ = {qdσ ∈ Q | (∃x ∈ X)[ (qdσ, x) ∈
R ×sc G ∧ (qm, xm) ∈ γsc((qdσ, x), σ)]}.

From the simulation-based controllable product of R and
G, we obtain that for any q ∈ Qd, there exists x such that (q,
x) has a transition to (qm, xm) along the corresponding un-
controllable event. We can delete those states by controllable
operator Fc.

Proposition 3: If Z ⊆ Fc(Z), where Z ⊆ Q × X, then any
(q, x) ∈ Z satisfies the controllable condition.

Proof: Assume that there exists (q, x) ∈ Z violating
the controllable condition, where Z ⊆ Fc(Z) and Z ⊆ Q ×
X, thus, we have q ∈ δ(q0, s) with δ(q, σ) = ∅, and sσ ∈
L(G), where σ ∈ Σuc. We can obtain that there exists x

′ ∈
α(x0, s) with σ ∈ Γ(x′). Moreover, (q, x′) belongs to the state
set of R ×sc G because it is reachable from (q0, x0) by the
string s. Furthermore, we have σ ∈ Σuc ∩ (Γs(x′) − Γ(q)) as
δ(q, σ) = ∅ and σ ∈ Γ(x′). Thus, (qm, xm) ∈ γsc((q, x), σ)
by the definition of simulation-based controllable product.
We obtain q ∈ Qd, therefore, (q, x) ∈ Qd × X. On the other
hand, we have (q, x) ∈ Fc(Z) as Z ⊆ Fc(Z). Then, we obtain
(q, x) < Qd × X by the definition of controllable operator.
Thus, there is a contradiction which shows the assumption
is wrong. Then, we obtain that any (q, x) ∈ Z satisfies the
controllable condition, where Z ⊆ Fc(Z) and Z ⊆ Q × X.

Proposition 4: If Z ⊆ Z′, then Fc(Z) ⊆ Fc(Z′).
Proof: For any (q, x) ∈ Fc(Z), we obtain (q, x) ∈ Z and

(q, x) < Qd × X. Then, (q, x) ∈ Z′ because Z ⊆ Z′. Thus, (q,
x) ∈ Fc(Z′). Therefore, we have Fc(Z) ⊆ Fc(Z′).

We can obtain that Fc(Z) is monotone from above propo-
sition. Furthermore, this monotonicity of Fc(Z) guarantees
the existence of supremal solution of inequality Z ⊆ Fc(Z)
over the complete lattice (2Q×X , ⊆).

D. Simulation-based Controllable Subautomata

Consider the system of inequalities as follows.
(1) F(Q1 × X1) ⊆ Fs(Q1 × X1);
(2) F(Q1 × X1) ⊆ Fc(Q1 × X1),
where Q1 × X1 ⊆ Q × X, and F(Q1 × X1) = Q1 × X1, we

have the following proposition.
Proposition 5: Let Y = { Q1 × X1 ⊆ Q × X | F(Q1 ×

X1) ⊆ Fs(Q1 × X1) and F(Q1 × X1) ⊆ Fc(Q1 × X1) }, then
Q1×X1 is the set of simulation-based controllable state pairs
if (q0, x0) ∈ Q1 × X1.

Proof: Because (q0, x0) ∈ Q1×X1 and Q1×X1 ⊆ Fs(Q1×
X1), we obtain that Q1 × X1 is a simulation relation from R
to G by proposition 2. Moreover, Q1 × X1 ⊆ Fc(Q1 × X1),
then for any (q, x) ∈ Q1 × X1, it satisfies the controllable
condition by proposition 3. Therefore, Q1 × X1 is the set of
simulation-based controllable state pairs.

Proposition 6:

Y1 = {Q1 × X1 ∈ 2Q×X | h1(Q1 × X1) = Q1 × X1}
is a set of fixed points of h1, where h1 : 2Q×X → 2Q×X is
defined as: for any Q1 × X1 ∈ 2Q×X ,

h1(Q1 × X1) = sup{Q2 × X2 ∈ 2Q×X : F(Q2 × X2)
⊆ Fs(Q1 × X1)} ∩ sup{Q3 × X3 ∈ 2Q×X :
F(Q3 × X3) ⊆ Fc(Q1 × X1)}

then supY = supY1.
Proof: From lattice theory, we know that (2Q×X , ⊆) is

a compete lattice over which we definite Fs(Q1 × X1) and
Fc(Q1 × X1). Fs(Q1 × X1) and Fo(Q1 × X1) are monotone by
proposition 1 and proposition 4. F(Q2 × X2) = Q2 × X2 and
F(Q3 × X3) = Q3 × X3 are disjunctive as well as conjunctive,
because they are identity functions. Therefore, supY = supY1
according to Lemma 1 [9].

Furthermore, supY can be calculated by the following
procedure.

Proposition 7: Let y0 = Q×X, ∀k ≥ 0, yk+1 = h1(yk) until
ym+1 = ym, we obtain ym = supY . Then, ym is the supremal
simulation-based controllable state set, if (q0, x0) ∈ ym.

Proof: By Lemma 2, we have ym = supY . Furthermore,
if (q0, x0) ∈ ym, we have any (q, x) ∈ ym is the simulation-
based controllable state pair by Proposition 5. Therefore, ym

is the supremal simulation-based controllable state set.
We introduce the concept of subautomata to describe the

new automata derived from the original system.
Definition 13: Given an automaton G = (X,Σ, x0, α, Xm),

the subautomaton of G is defined as G1 = (X1,Σ1, x0, α, Xm1),
where X1 ⊆ X, Xm1 ⊆ Xm, and α1 = α | X1 × Σ→ X1.

The subautomaton G1 has the same initial state and the
event set as the original system. Thus, once x ∈ X1 in G1,
it will have the same transition and active events as those
in G. Besides, the states and marked states in G1 are picked
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from the corresponding sets in G, therefore, the number of
states in state set and marked state set in G1 is smaller than
those in G.

Definition 14: Given an automaton R = (Q,Σ, q0, δ,Qm),
the subautomata operator is defined as:

Rc(QR(Z)) = (Qrc,Σ, q0, δ,Qrcm),

where Z ⊆ Q × X, Qrc = {q | q ∈ QR(Z)}, Qrcm = Qm ∩ Qrc,
and QR : Q×X → Q defined as QR(q, x) = q for any (q, x) ∈
Q × X.

We have QR(Z) ⊆ Q, where Z ⊆ Q × X, because QR(Z)
projects Q × X to Q. Then, we can construct a subautomton
of R from QR(Z) by using of subautomata operator.

Theorem 2: If (q0, x0) ∈ ym, the supremal simulation-
based controllable subautomaton exists and it equals to
Ac(Rc(QR(ym))).

Proof: By proposition 7, we have ym is the supremal
simulation-based state set, if (q0, x0) ∈ ym. Then, we have
Q1 = QR(ym) ⊆ Q. Next, we build the subautomton of
R according to Q1. Following this, we remove the states
which are not reachable from q0 in Rc(QR(ym)). Therefore,
Ac(Rc(QR(ym))) is supremal simulation-based controllable.

Algorithm 1: The algorithm for computing the supremal
simulation-based controllable subautomata as follows.

1. Let y0 = Q × X, ∀k ≥ 0, yk+1 = h1(yk) until ym+1 = ym.
2. If (q0, x0) < ym, the supremal simulation-based control-

lable subautomaton does not exist, otherwise, if (q0, x0) ∈
ym, Ac(Rc(QR(ym))) is the supremal simulation-based con-
trollable subautomaton.

This algorithm starts from the whole state set Q× X. The
number of the state pairs is reduced or unchanged through
h1, thus, the algorithm can be terminated in finite time.

IV. EXAMPLE

To illustrate the proposed method of computing the supre-
mal simulation-based controllable subautomata, we present
an example.

Example 1: Consider a plant G = (X,Σ, x0, α, Xm) and a
specification R = (Q,Σ, q0, δ,Qm) shown in Fig.1, where Xm

= {x3, x5, x6} and qm = {q4}, we assume Σuc = {d} and Σc =

{a, b, c}.
Firstly, we would like to obtain the supremal simulation

relation between the plant and the specification. According
to Theorem 1, the state pairs which marked by blue shadow
in Fig. 2 are excluded by Fs(Q × X) in the first around.
And the state pair (q1, x1), (q1, x4) marked by the red
shadow in Fig.2, are removed by F2

s (Q × X) in the second
iteration. Finally, we obtain the fixed-point of Fs(Q × X):
{(q0, x0), (q2, x2), (q3, x0), (q3, x5), (q4, x3), (q4, x5), (q4, x6)}.
We can see that (q0, x0) belongs to this fixed-point of Fs,

Fig. 1. Plant (Left) and Specification (Right)

therefore, the fixed-point of Fs is the supremal simulation
relation.

Fig. 2. Iterative algorithm for FS

In Fig.3, we can obtain that q1 ∈ Qdd, which violates the
controllable condition, therefore, all the states pairs q1 × X
should be deleted. As a result, the set of controllable state
pairs is Zc = {(q, x) ∈ Q × X | (q, x) < q1 × X}.

According to the Algorithm 1, we have
1. y0 = Q × X,

y1 = h1(y0)
= {(q0, x0), (q1, x1), (q1, x4), (q2, x2), (q3, x0), (q3, x5),
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Fig. 3. Simulation-based Controllable Product

(q4, x3), (q4, x5), (q4, x6)} ∩ {(q, x) ∈ Q × X | (q, x)
< q1 × X}

= {(q0, x0), (q2, x2), (q3, x0), (q3, x5), (q4, x3), (q4, x5),
(q4, x6)}

y2 = h1(y1)
= {(q0, x0), (q2, x2), (q3, x0), (q3, x5), (q4, x3), (q4, x5),

(q4, x6)} ∩ {(q0, x0), (q2, x2), (q3, x0), (q3, x5),
(q4, x3), (q4, x5), (q4, x6)}

= {(q0, x0), (q2, x2), (q3, x0), (q3, x5), (q4, x3), (q4, x5),
(q4, x6)}

= y1

2. We get that (q0, x0) ∈ y1, which guarantees the existence
of supremal simulation-based controllable subautomaton.
Then, Rc(QR(y1)) is obtained in Fig. 4 (Left). Furthermore,
the supremal simulation-based controllable subautomaton
Ac(Rc(QR(y1))) is achieved in Fig. 4 (Right).

V. CONCLUSIONS

By resorting to lattice theory, we proposed a computational
approach to solve the supremal simulation-based controllable
subautomata, where both the plant and the specification
are modelled as nondeterministic automata. The obtained
solution provides a sufficient condition of the existence of the
supremal simulation-based controllable subautomta and an
explicit algorithm to calculate such subautomta. Future work
will concentrate in development of corresponding algorithm
for partial observation case.

Fig. 4. Rc(QR(y1)) (Left) and Ac(Rc(QR(y1))) (Right)
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