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a b s t r a c t

In this paper, the disturbance attenuation properties in the sense of uniformly ultimate
boundedness are investigated for a class of switched linear systems with parametric
uncertainties and exterior disturbances. The aim is to characterize the conditions under
which the switched system can achieve a finite disturbance attenuation level. First,
arbitrary switching signals are considered, and a necessary and sufficient condition is
given. Secondly, conditions on how to restrict the switching signals to achieve finite
disturbance attenuation levels are investigated. Two cases are considered here that depend
onwhether all the subsystems are uniformly ultimately bounded or not. Both discrete-time
and continuous-time switched systems are considered, and the techniques are based on
multiple polyhedral Lyapunov functions and their extensions.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The last decade has seen increasing research activities in the field of switched systems, and the main efforts typically
focus on the analysis of dynamic behaviors, such as stability, controllability, reachability, and observability, and aim to
design controllers with guaranteed stability and optimized performance; see e.g., [1–7]. However, the literature on robust
performance of switched systems is still relatively sparse, and most existing results assume that the disturbances are
constrained to have finite energy, i.e., bounded L2 norm; see e.g. [3,8–10]. In practice, there are disturbances that do
not satisfy this condition and act more or less continuously over time. Such disturbances are called persistent, and they
cannot be treated in the above framework. In this paper, the disturbance attenuation property is in the signal’s magnitude
sense, i.e., time domain specifications. Moreover, we explicitly consider dynamic uncertainty in the switched systemmodel.
Dynamics uncertainty in the plant model is one of the main challenges in control theory, and it is of practical importance to
deal with dynamical uncertainties explicitly.
In this paper, we aim to investigate the disturbance attenuation properties for classes of switched linear systems

which are perturbed by both parameter variations and exterior disturbances. Both discrete-time and continuous-time cases
are considered here. In particular, we are interested in switched linear systems whose subsystems are described by the
perturbed difference equations with parametric uncertainties

x[k+ 1] = Aq(w)x[k] + Eqd[k], k ∈ Z+, (1)

or a collection of perturbed differential equations with parametric uncertainties

ẋ(t) = Aq(w)x(t)+ Eqd(t), t ∈ R+, (2)
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where q ∈ Q = {q1, q2, . . . , qN}, the state variable x ∈ Rn, and the disturbance input d ∈ D ⊂ Rr . Assume that D is a
C-set. The term C-set stands for a convex and compact set containing the origin in its interior. Assume polytopic uncertainty
in (1) and (2), i.e., Aq(w) =

∑vq
j=1wjA

j
q, wj ≥ 0 and

∑vq
j=1wj = 1. Notice that A

j
q are known constant n × n matrices

and the coefficients wj are unknown and possibly time varying. Without loss of generality, we assume that Eq ∈ Rn×r is a
constant matrix. The logical rule that orchestrates switching between these subsystems generates switching signals, which
are usually described as classes of maps, σ : R+ → Q (or sequences σ : Z+ → Q ).
It is known that the dynamic properties of a switched systemdepend not only on its subsystems but also on the switching

signals. The aim of this paper is to characterize the dynamics of each subsystem and the properties of switching signals
such that the switched systems generate convergent behaviors. Because of parameter variations and exterior disturbances,
it is only reasonable to expect that the trajectories of the switched system converge into a neighborhood region of the
equilibrium (the origin here), which is the so-called practical stability or uniformly ultimate boundedness in the literature.

Definition 1. The uncertain switched system under the switching signal σ(t) (or σ(k)) is Uniformly Ultimately Bounded
(UUB) if there exists a C-set S such that, for every initial condition x(0) = x0, there exists a finite T (x0), and x(t) ∈ S for
t ≥ T (x0) (or x[k] ∈ S for k ≥ T (x0)).

The disturbance attenuation properties considered here are in the sense of the uniformly ultimate boundedness. Given
a collection of switching signals, if the switched system is UUB for all these switching signals, then the switched system
is said to have finite disturbance attenuation level under this class of switching signals. If the switched system is UUB
for all possible switching signals, the switched system is said to have finite disturbance attenuation level under arbitrary
switching. We are also interested in characterizing a useful subclass of switching signals such that the switched system
achieves finite disturbance attenuation level even when not all its subsystems have finite disturbance attenuation levels.
The characterization is mainly in the time domain, and sufficient conditions on the average dwell time and activation ratio
are derived for switching signals based on the multiple Lyapunov function method. Here, we propose to use non-quadratic
Lyapunov-like functions, namely polyhedral Lyapunov-like functions, to reduce the conservativeness as it is shown that
there always exist polyhedral Lyapunov-like functions for each subsystem under certain conditions.
The paper is organized as follows. In Section 2, the disturbance attenuation properties under arbitrary switching are

considered, where necessary and sufficient conditions are described. Section 3 studies the case when all the subsystems
are UUB while not stable under arbitrary switching, and requirements on switching signals to guarantee UUB are identified
based on multiple polyhedral Lyapunov functions and an average dwell time scheme. In Section 4, a more general case,
namelywhen there are unstable subsystems, is investigated. Based on extensions of classical polyhedral Lyapunov functions
for these unstable subsystems, multiple polyhedral Lyapunov-like functions are employed to identify conditions to achieve
a finite disturbance attenuation level. Both discrete-time and continuous-time switched systems are considered here.

Notation: The letters E,P , S, . . . denote sets, and ∂P the boundary of set P . For any real λ ≥ 0, the set λS is defined
as {x = λy, y ∈ S}. A polytope (bounded polyhedral set) P will be presented either by a set of linear inequalities
P = {x : Fix ≤ gi, i = 1, . . . , s}, or by the dual representation in terms of the convex hull of its vertex set vert(P) = {xj},
denoted by Conv{xj}.

2. Performance under arbitrary switching

When there is no restriction or a priori knowledge on the switching signals, arbitrary switchings are usually assumed. In
addition, in the framework of multiple-controller design [11], it is often desirable to retain stability or boundedness under
all possible switchings among these multiple controllers. If this can be guaranteed, then onemay just focus on switching for
better performance in design, and gain more flexibility in operation. Hence, we consider arbitrary switching in this section
and derive necessary and sufficient conditions for the switched systems to achieve finite disturbance attenuation properties.
For this, it is necessary to require that every subsystem has a finite disturbance attenuation level. However, even when all
the subsystems of a switched system are UUB, it is still possible to construct a divergent trajectory from any initial state
for such a switched system. Therefore, in general, the above subsystems’ UUB assumption is not sufficient to assure a finite
disturbance attenuation property for the switched system under arbitrary switching.
It is known that a linear system is UUB if and only if the corresponding autonomous system is asymptotically stable

[12]. Therefore, this problem is transformed into a stability analysis problem for an autonomous switched system under
arbitrary switching,1 which has been studied in the literature extensively; see, e.g., [1,2] and the references there. However,
most existing results are either based on or imply the existence of a commonquadratic Lyapunov function,which is sufficient
only. Here, necessary and sufficient conditions will be given below.
For such a purpose, we first consider the discrete-time case and introduce the following polytopic uncertain linear time-

variant (LTV) system

x[k+ 1] = A(k)x[k], (3)

1 Since switched systems under restricted switching signals are basically nonlinear, it remains unclear whether the UUB property of a switched system
under restricted switchings is equivalent to its stability or not. Hence, we will treat UUB directly in the next sections when we consider the performance
under restricted switchings.



H. Lin, P.J. Antsaklis / Nonlinear Analysis: Hybrid Systems 4 (2010) 279–290 281

where A(k) ∈ A=̂Conv{A1q1 , A
2
q1 , . . . , A

vq1
q1 , A

1
q2 , . . . , A

vq2
q2 , . . . , A

1
qN , . . . , A

vqN
qN }. In other words, the state matrix A(t) of the

above LTV system (3) is constructed by convex combinations (with time-variant coefficients) of all the subsystems’ vertex
matrices of the switched linear system (1). Let us denote the index set for these vertices as i ∈ I. A necessary and sufficient
condition for the asymptotic stability of the above linear time-variant system (3) is stated as follows [13].

Lemma 1 ([13]). The LTV system (3) is globally asymptotically stable if and only if there exists a finite integer n such that

‖Ai1Ai2 · · · Ain‖ < 1,

for all n-tuple Aij ∈ vert(A), where j = 1, . . . ,n. Here the norm ‖ · ‖ stands for either the 1 norm or∞ norm of a matrix.

As an immediate consequence, necessary and sufficient conditions for the discrete-time switched systems (1) to achieve
a finite asymptotic disturbance attenuation level under arbitrary switching can be expressed as the following theorem.

Proposition 1. The following statements are equivalent:
(1) The discrete-time switched linear system (1) has a finite disturbance attenuation level;
(2) the autonomous switched linear system x[k+ 1] = Aσ(k)x[k], where Aσ(k)(w) ∈ {Aq1(w), Aq2(w), . . . , AqN (w)}, is globally
asymptotically stable under arbitrary switching;

(3) the LTV system (3) x[k+ 1] = A(k)x[k], where A(k) ∈ A, is asymptotically stable;
(4) there exists a finite integer n such that

‖Ai1Ai2 · · · Ain‖ < 1,

for all n-tuple Aij ∈ vert(A), where j = 1, . . . ,n. �

It is quite interesting that the robust stability of a polytopic uncertain LTV system, which has infinite number of possible
dynamics (modes), is equivalent to the stability of a switched system under arbitrary switching between its finite number of
vertex dynamics. Note that this is not a surprising result since this fact has already been implied by the finite vertex stability
criteria for robust stability in the literature, e.g., [14,15]. By explicitly exploring this equivalence relationship, wemay obtain
some ‘‘new’’ stability criteria for switched linear systems using the existing robust stability results [14,15]. For example,

Proposition 2. The discrete-time switched linear system (1) has a finite disturbance attenuation level under arbitrary switching
if and only if there exists an integer m ≥ n and L ∈ Rn×m, rank(L) = n, such that, for all Ai, i ∈ I, there exists Āi ∈ Rm×m with
the following properties:
(1) ATi L = LĀ

T
i ,

(2) each column of Āi has no more than n nonzero elements and

‖Āi‖∞ = max
1≤k≤m

m∑
l=1

|âkl| < 1. �

Following similar arguments, the above equivalence also holds for the continuous-time case, namely,

Proposition 3. The following statements are equivalent:
(1) The continuous-time switched linear system (2) achieves a finite disturbance attenuation level under arbitrary switching;
(2) the undisturbed continuous-time switched linear system ẋ(t) = Aσ(t)(w)x(t), where Aσ(t)(w) ∈ {Aq1(w), Aq2(w), . . . , AqN

(w)}, is globally asymptotically stable under arbitrary switching;
(3) the LTV system ẋ(t) = A(t)x(t), where A(t) ∈ A, is asymptotically stable;
(4) there exist a full column rank matrix M ∈ Rm×n, m ≥ n, and a family of matrices {Āi ∈ Rm×n : i ∈ I} with strictly negative
row dominating diagonal, such that the matrix relations MAi = ĀiM are satisfied. �

The last necessary and sufficient algebraic condition originates from [14], which studied the uniform asymptotic stability
for differential and difference inclusions. Based on the equivalence between the asymptotic stability of arbitrary switching
linear systems and the robust stability of polytopic uncertain LTV systems, some well established converse Lyapunov
theorems for LTV systems can be introduced for arbitrary switching linear systems. For example, the following result was
adopted from [14].

Proposition 4. If a (discrete-time or continuous-time) switched linear system is asymptotically stable under arbitrary switching
signals, then there exists a polyhedral Lyapunov function, which is monotonically decreasing along the switched linear system’s
trajectories. �

Comparing with existing converse Lyapunov theorems, e.g. [16–19], the above result has the following advantages. First,
it shows that one may focus on polyhedral Lyapunov function without loss of generality. Second, there exist automated
computational methods to calculate polyhedral Lyapunov functions [20–22]. In the following sections, we will employ
multiple polyhedral Lyapunov functions and their extensions to study the stability issues for switched systems under
constrained, instead of arbitrary, switching signals.
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3. Performance under slow switching: UUB subsystems

If the finite disturbance attenuation level is not preserved under arbitrary switching, it is still possible to restrict
the switching signals so as to achieve a finite disturbance attenuation level. It is shown in [8,23] that the stability and
performance could be preserved under certain constrained switching signals, such as slow switching with bounded average
dwell time. Therefore, it is interesting to classify the classes of switching signals under which the switched system remains
UUB. The stability analysis with constrained switching has been usually pursued in the framework of multiple Lyapunov
functions (MLFs) [1,2,24,25].
Following [26], we call a function Ψ : Rn → R a gauge function if Ψ (x) ≥ 0, Ψ (x) = 0 ⇔ x = 0; for µ > 0,

Ψ (µx) = µΨ (x); and Ψ (x + y) ≤ Ψ (x) + Ψ (y), ∀x, y ∈ Rn. A gauge function is convex and it defines a distance
of x from the origin which is linear in any direction. If Ψ is a gauge function, we define the closed set (possibly empty)
N̄[Ψ , ξ ] = {x ∈ Rn : Ψ (x) ≤ ξ}. It is easy to show that the set N̄[Ψ , ξ ] is a C-set for all ξ > 0. On the other hand, any C-set
S induces a gauge function ΨS(x) (known as a Minkowski function of S), which is defined as Ψ (x) = inf{µ > 0 : x ∈ µS}.
Therefore a C-set S can be thought of as the unit ball S = N̄[Ψ , 1] of a gauge function Ψ and x ∈ S ⇔ Ψ (x) ≤ 1.

3.1. Discrete-time case

3.1.1. Polyhedral Lyapunov function
First, consider the discrete-time case and assume that each subsystem

x[k+ 1] = A(w)x[k] + Ed[k] (4)

is UUB along with a Lyapunov function in the following sense.

Definition 2. Given a C-set S, a Lyapunov function outside S for the subsystem (4) is defined as a continuous function
Ψq : Rn → R+ such that N̄[Ψq, κ] ⊂ S, for some positive scalar κ , for which the following condition holds: if x 6∈ N̄[Ψq, κ]
then ∃0 < λq < 1 such that

Ψq(Aq(w)x+ Eqd) ≤ λqΨq(x),

for allw ∈ W and d ∈ D . �

It can be derived from the above Lyapunov function definition that

Ψq(x[k]) ≤ max{λk−k0q Ψq(x[k0]), κ} ∀k > k0

for a trajectory x[k] of (4) starting from x[k0] at time k0. This further implies the following result.

Lemma 2 ([20]). If there exists a Lyapunov function outside S for the subsystem (4), then it is uniformly ultimately bounded
(UUB) in S. �

It can be shown that there always exists a polyhedral C-set and a polyhedral Lyapunov function outside this set for UUB
LTV systems. Therefore, without loss of generality, we assume that (4) has a polyhedral Lyapunov function Ψq outside S.
The next question is how to compute the polyhedral Lyapunov function Ψq(·). For this, we need the concept of a

contractive set, which is defined as follows.

Definition 3. Given a scalar 0 < λ < 1, a set S is said λ-contractive with respect to the system (4) if, for any x ∈ S,
postq(x,W,D) ⊆ λS. Here postq(·) is defined as

postq(x,W,D) = {x
′
: x′ = Aq(w)x+ Eqd; ∀w ∈ W, d ∈ D},

which represents all the possible next step states of (4) from the current state x.

The determination of Ψq(·) outside S is through the calculation of a λ-contractive set inside S, which can be achieved
through the following iterative procedure [26].
Consider the following sequence of sets:

{Xk} : X0 = S, Xk = preq(λXk−1) ∩ S; k = 1, 2, . . . (5)

where preq(S) is defined as

preq(S) = {x ∈ Rn : postq(x,W,D) ⊆ S}. (6)

Once the above procedure terminates, in the sense ofXk+1 = Xk (assume non-empty and contains the origin), then it
returns a λ-contractive set contained in S. The following result is adopted from [20,26].
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Theorem 1. If the above procedure (5) terminates and returns a nonempty C-set Pλ for some 0 < λ < 1, then the system (4) is
uniformly ultimately bounded (UUB) inPλ ⊆ S. In addition,Pλ is a C-set, whose induced Minkowski functionalΨPλ(x) serves as
a Lyapunov function for (4) outside N̄[ΨPλ , 1] ⊂ S. �

Such a Lyapunov function is uniquely generated from the target set S for any fixed λ, so it is named a Set-induced
Lyapunov Function (SILF) in the literature; see [20,26] and its references. For systemswith linearly constrained uncertainties,
it can be shown that such a function may be derived by numerically efficient algorithms involving polyhedral sets; see
e.g. [21,22].

3.1.2. UUB analysis
In this subsection, it is assumed that each subsystem isUUBwith decay rateλq alongwith a polyhedral Lyapunov function,

Ψq(·). Now, define the multiple Lyapunov function candidate as

V (x[k]) = Ψσ(k)(x[k]).

Let k1, k2, . . . stand for the time points at which switching occurs, and write qj for the value of σ(k) on [kj−1, kj). Then,
for any k satisfying k0 = 0 < · · · < ki ≤ k < ki+1, we obtain

V (x[k]) ≤ max{λk−kiqi Ψqi(x[ki]), 1}.

Also, there exists a constant scalar µ such that Ψi(x) ≤ µΨj(x) and Ψj(x) ≤ µΨi(x), for all x ∈ Rn. A possible choice for µ is
the largest value among Ψj(vj), ∀vj ∈ vert{N̄[Ψi, 1]}, and Ψi(vj), ∀vj ∈ vert{N̄[Ψj, 1]}. This can be verified by exploring the
geometric property of the level sets of Ψi(x) and Ψj(x), which is shown in the Appendix.
Denote λ0 = maxq∈Q {λq}. Then

V (x[k]) ≤ max{λk−ki0 Ψqi(x[ki]), 1}

≤ max{λk−ki−10 µΨqi−1(x[ki]), 1}
≤ · · ·

≤ max{λk0µ
iΨq0(x[0]), 1}

= max{λk0µ
Nσ (k)V (x[0]), 1}

where Nσ (k) denotes the number of switchings of σ(k) over the interval [0, k). Assume that there exists a scalar 0 < λ∗ < 1
such that

λk0µ
Nσ (k) ≤ (λ∗)k. (7)

This inequality is equivalent to

Nσ (k) ≤
k
τ ∗a
, τ ∗a =

lnµ
ln λ∗ − ln λ0

(8)

which is exactly an average dwell time scheme. The constant τ ∗a is called the average dwell time. The idea is that there may
exist consecutive switchings separated by less than τ ∗a , but the average time interval between consecutive switchings is not
less than τ ∗a . Note that the concept of average dwell time between subsystems was originally proposed for continuous-time
switched systems in [23], and was extended to the discrete-time case in [27].
From the average dwell switching scheme, we obtain

V (x[k]) ≤ max{(λ∗)kV (x[0]), 1}.

This implies that the entire system is UUB. In summary, we have

Theorem 2. If all subsystems of the discrete-time switched system (1) are UUB, then the switched system (1) achieves a finite
asymptotic disturbance attenuation property under switching signals with average dwell time no less than lnµ

ln λ∗−ln λ0
in the sense

of (8).

3.2. Continuous-time case

3.2.1. Polyhedral Lyapunov function
The technique of multiple polyhedral Lyapunov functions and the procedure (5) for discrete-time subsystem (4) can be

extended in parallel to the continuous-time case.
It is also assumed that each continuous-time subsystem

ẋ(t) = Aq(w)x(t)+ Eqd(t) (9)

is UUB along with a Lyapunov function in the following sense.
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Definition 4. Given a C-set S, a Lyapunov function outside S for the subsystem (9) is defined as a continuous function
Ψq : Rn → R+ such that N̄[Ψq, κ] ⊂ S, for some positive scalar κ , for which the following condition holds: if x 6∈ N̄[Ψ , κ]
then ∃βq > 0 such that

D+Ψq(x(t)) ≤ −βqΨq(x(t)). �

Here D+Ψq(x(t)) stands for the upper right Dini derivative of Ψq(x(t)) along the trajectories of system (9), which is
defined as

D+Ψq(x(t)) = lim sup
τ→0+

Ψq(x(t + τ))− Ψq(x(t))
τ

.

Under the assumption that d(t) andw(t) are continuous, then the value of the Dini derivative of the point x(t) = x equals

D+Ψq(x(t)) = lim sup
τ→0+

Ψq(x+ τ [Aq(w)x+ Eqd])− Ψq(x)
τ

where x(t) = x, d(t) = d andw(t) = w [20].
Based on differential inequality theory, it can be derived from the above Lyapunov function definition that

Ψq(x(t)) ≤ max{e−βq(t−t0)Ψq(x(t0)), κ} ∀t > t0
for a trajectory x(t) of (9) starting from x(t0) at time t0.
Similar to the discrete-time case, the existence of a Lyapunov function outside S for the continuous-time subsystem (9)

implies that (9) is uniformly ultimately bounded (UUB) in S. In addition, it is without loss of generality to assume that each
subsystem (9) has a polyhedral Lyapunov functionΨq outside S. To calculateΨq for the continuous-time system (9), we need
the Euler approximating system (EAS) of (9) as the following discrete-time system:

x(t + 1) = [I + τAq(w)]x(t)+ τEqd(t). (10)
The connection between the EAS (10) and its original continuous-time system (9) is through the lemma [20].

Lemma 3 ([20]). If there exists a C-set P that is λ-contractive with respect to the EAS (10) for some 0 < λ < 1 and τ > 0, then
the Minkowski function of P , denoted asΨP (x), has negative upper right Dini derivative along the trajectories of the continuous-
time system (9). �

Therefore, the determination of a polyhedral Lyapunov function Ψq (outside S) reduces to the calculation of a λ-
contractive set with respect to the EAS (10) (contained in S), which can be solved by applying the procedure (5) to the
EAS (10). Then, the following result holds.

Proposition 5. If the procedure (5) for the EAS (10) terminates and returns a nonempty C-set Pλ for some 0 < λ < 1 and
τ > 0, then the system (9) is uniformly ultimately bounded (UUB) inPλ ⊆ S. In addition,Pλ is a C-set, whose inducedMinkowski
functionalΨPλ(x) serves as a Lyapunov function for (9) outside N̄[ΨPλ , 1] ⊂ S. In particular, N[ΨPλ , 1] ⊂ S, and for x 6∈ N[Ψ , 1]

D+ΨPλ(x(t)) ≤ −
1− λ
τ

ΨPλ(x(t)). �

The proof of this proposition can be found in [20,26].

3.2.2. UUB analysis
In what follows, it is assumed that each subsystem (9) is UUB with decay rate βq along with a polyhedral Lyapunov

function, Ψq(·). Now, define the multiple Lyapunov function candidate as

V (x(t)) = Ψσ(t)(x(t)).
Let t1, t2, . . . stand for the time points at which switching occurs, and write qj for the value of σ(t) on [tj−1, tj). Then, for

any t satisfying t0 = 0 < · · · < ti ≤ t < ti+1, we obtain

V (x(t)) ≤ max{e−βqi (t−ti)Ψqi(x(ti)), 1}.
There exists a constant scalar µ such that Ψqi(x) ≤ µΨqj(x) and Ψqj(x) ≤ µΨqi(x), for all x ∈ Rn.
Denote β0 = minq∈Q {βq}. Then

V (x(t)) ≤ max{e−βqi (t−ti)Ψqi(x(ti)), 1} ≤ max{e
−β0(t−ti)Ψqi(x(ti)), 1}

≤ max{e−β0(t−ti)µΨqi−1(x(ti)), 1}

≤ max{e−β0(t−ti)µe−β0(ti−ti−1)Ψqi−1(x(ti−1)), 1}
≤ · · ·

≤ max{e−β0tµiΨq0(x(0)), 1}

= max{e−β0tµNσ (t)V (x(0)), 1}
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whereNσ (t) denotes the number of switchings of σ(t) over the interval [0, t). Assume that there exists a scalar 0 < β∗ < β0
such that

e−β0tµNσ (t) ≤ e−β
∗t . (11)

This inequality is equivalent to

Nσ (t) ≤
t
τ ∗a
, τ ∗a =

lnµ
β0 − β∗

(12)

which is exactly an average dwell time scheme.
Then we obtain

V (x(t)) ≤ max{e−β
∗tV (x(0)), 1}.

This implies that the entire system is UUB. In summary, we have

Theorem 3. If all the subsystems of switched system (2) are UUB, then the switched system (2) achieves a finite asymptotic
disturbance attenuation level under switching signals with average dwell time no less than τ ∗a =

lnµ
β0−β∗

in the sense of (12). �

4. Performance under slow switching: With non-UUB subsystems

In the previous section, we specified a class of slow switching signals that guarantee the uniformly ultimate boundedness
for uncertain switched linear systemswith stable subsystems. However, there are some cases that it is unavoidable to switch
to unstable subsystems, such as controller failure in fault tolerant systems, packet dropouts in networked control systems,
etc.
In this section, we will study the case when not all the subsystems are uniformly ultimately bounded. Without lost of

generality, it is assumed that the first r subsystem are UUB alongwith a Lyapunov function, while the remaining subsystems
are not UUB. To make the problem tractable, the expansion rates of these unstable subsystems are limited. In particular, we
assume that the expansion of the unstable subsystems are bounded in the sense of polyhedral Lyapunov-like functions,
which are introduced below and represent extensions of classical polyhedral Lyapunov functions.

4.1. Discrete-time case

4.1.1. Polyhedral Lyapunov-like function
For a subsystem that is not UUB, there does not exist a polyhedral Lyapunov function as derived in the previous section.

Therefore, we generalize the concept of the λ-contractive set and derive a polyhedral Lyapunov-like function. For such a
purpose, we first introduce the following definition for a Lyapunov-like function.

Definition 5. Given a C-set S, a Lyapunov-like function outside S for the subsystem (4) is defined as a continuous function
Ψq : Rn → R+ such that N̄[Ψq, κ] ⊂ S, for some positive scalar κ , for which the following condition holds: if x 6∈ N̄[Ψq, κ]
then ∃λq > 1 such that

Ψq(Aq(w)x+ Eqd) ≤ λqΨq(x),

for allw ∈ W and d ∈ D . �

This Lyapunov-like function outside S definition is quite similar to the definition of Lyapunov function outside S in
the previous section. The difference here is that the value of a Lyapunov-like function increases at every step instead of
decreasing. To capture this trend of expansion in the state space, we introduce the following expansive set definition, which
is the counterpart to contractive set in the previous section.

Definition 6. Given a scalar λ > 1, a set S is said to be λ-expansive with respect to the discrete-time subsystem (4) if, for
any x ∈ S such that postq(x,W,D) ⊆ λS.

Definition 7. The subsystem (4) is said to have expansive index λ > 1 to the C-set S iff there exists a gauge function Ψ (x)
and a constant ξ > 0 such that the ball N̄[Ψ , ξ ] ⊆ S and, if x 6∈ int{N̄[Ψ , ξ ]}, then Ψ (postq(x, w, d)) ≤ λΨ (x) for all
w ∈ W and d ∈ D (or, equivalently, N̄[Ψ , µ] is λ-expansive for all µ ≥ ξ ).

Intuitively, the concepts of λ-expansive set and expansive index λ reflect how explosive the unstable subsystems are.
For LTI subsystems, this is related to the magnitude of their unstable eigenvalues. It is straightforward to show that a
λ-expansive set has the following property, just like a λ-contractive set.

Lemma 4. If P is λ-expansive set for the system (9), then µP is so for all µ ≥ 1. (If D = {0}, for all µ ≥ 0.)
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Proof. Let x ∈ µP , hence µ−1x ∈ P , so postq(µ−1x,W,D) ⊂ λP . Note that µ−1D ⊂ D , so postq(x,W,D) = µ× postq
(µ−1x,W, µ−1D) ⊂ µ× postq(µ−1x,W,D) ⊂ λµP . �

The next question is how to determine such a λ-expansive set for an unstable subsystem. It turns out that the procedure
developed for contractive sets can be extended to the case of an expansive set in parallel, which is described in the following.
Let S be assigned. Consider the following sequence of sets:

{Xk} : X0 = S, Xk = preq(λXk−1) ∩ S; k = 1, 2, . . . . (13)

We say that a λ-expansive set Pλ ⊆ S ismaximal in S iff every λ-expansive set P contained in S is also contained in Pλ.

Proposition 6. The maximal λ-expansive set Pλ ⊆ S is given by Pλ =
⋂
∞

k=0Xk.

Proof. First, we show that Xk+1 ⊂ Xk. Indeed, X1 ⊂ X0. Assume that Xk ⊂ Xk−1; then λXk ⊂ λXk−1, so Xk+1 =

preq(λXk) ∩ S ⊂ preq(λXk−1) ∩ S = Xk.
Next, we prove that, if Pλ is nonempty, then it is λ-expansive. If x ∈ Pλ, then x ∈ Xk for all k. For h ≥ 0 and

k ≥ h, post(x,W,D) ⊂ λXk−1 ⊂ λXh−1. For all w ∈ W and d ∈ D , postq(x, w, d) ∈ λXh−1. Since h is arbitrary, so
postq(x, w, d) ∈ λPλ. Therefore, Pλ is λ-expansive.
Finally, we prove that Pλ is maximal. Let P ⊂ X0 be λ-expansive. Assume P ⊂ Xk. For any x ∈ P , postq(x,W,D) ⊂

λP ⊂ λXk. Hence, x ∈ Xk+1, then P ⊂ Xk+1. Therefore, P ⊂ Xk for all k. Thus, P ⊂ Pλ. �

The above iterative procedure for determining themaximalλ-expansive setmay fail to terminate in finite steps. However,
under certain conditions, the maximal λ-expansive set Pλ could be determined by finite iterations as shown below.

Proposition 7. Assume that Pλ is a C-set, and λ > 1. Then for every λ∗ such that 1 < λ < λ∗, there exists k such that Xk is
λ∗-expansive for all k ≥ k.

Proof. Let ξ = λ∗

λ
> 1. There exists k such that Pλ ⊂ Xk ⊂ ξPλ, for k ≥ k. Since ξPλ is λ-expansive (from Lemma 4), for

any x ∈ Xk, so x ∈ ξPλ, and postq(x,W,D) ⊂ λξPλ ⊂ λξXk = λ
∗Xk. �

With the existence and determination of a non-emptymaximal λ-expansive setPλ ⊆ S, wemay induce a Lyapunov-like
function from Pλ.

Proposition 8. If Pλ =
⋂
∞

k=0Xk is a nonempty C-set, then its Minkowski function ψ(x) = ΨPλ(x) is a Lyapunov-like function
for the subsystem (9) outside Pλ ⊆ S.

This is straightforward to verify based on the definitions of a λ-expansive set and Lyapunov-like functions.

4.1.2. UUB analysis
Based on similar techniques in [20], it can be argued that it does not cost generality to focus only on the polyhedral

Lyapunov-like functions under the existence assumption of a Lyapunov-like function for (4). Therefore, it is assumed that
each unstable subsystem has an expansive index λq > 1 to S along with a polyhedral Lyapunov-like function, Ψq(·). For the
UUB subsystems, the existence of polyhedral Lyapunov-like functions Ψq(·) outside S is still assumed. Similarly, define the
multiple Lyapunov function candidate as

V (x[k]) = Ψσ(k)(x[k]). (14)

For any switching signal σ(k) and any k > 0, let Ki(k) denote the total period that the qi-th subsystem is activated during
[0, k). Define K−(k) =

∑
i≤r, qi∈Q

Ki(k), which stands for the total activation period of the UUB subsystems. On the other
hand, K+(k) =

∑
i>r, qi∈Q

Ki(k) denotes the total activation period of the non-UUB subsystems.We have K−(k)+K+(k) = k.
For any k satisfying k0 = 0 < · · · < ki ≤ k < ki+1, we obtain

V (x[k]) ≤ max{λk−kiqi Ψqi(x[ki]), 1}. (15)

Let us define λs = max1≤i≤r{λqi} < 1, and λu = maxr<i≤N{λqi} ≥ 1. Also, there exists a constant scalar µ such that
Ψi(x) ≤ µΨj(x) and Ψj(x) ≤ µΨi(x), for all x ∈ Rn. The scalar µ can be selected as in the previous section.
Therefore, by induction, we have

V (x[k]) ≤ max{λK
−(k)
s λK

+(k)
u µNσ (k)V (x[0]), 1}.

If there exists a positive scalar 0 < λ < 1 such that

K+(k)
k
≤
ln λ− ln λs
ln λu − ln λs

(16)
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which is a condition on the percentage of time interval that the unstable subsystems are activated, then we obtain(
λu

λs

)K+(k)
≤

(
λ

λs

)k
⇔ λK

−(k)
s λK

+(k)
u ≤ λk. (17)

And thus

V (x[k]) ≤ max{λkµNσ (k)V (x[0]), 1}.

Assume that

λkµNσ (k) ≤ (λ∗)k (18)

for some 0 < λ∗ < 1. This inequality is equivalent to

Nσ (k) ≤
k
τ ∗a
, τ ∗a =

lnµ
ln λ∗ − ln λ

(19)

which is an average dwell time scheme as well. Therefore

V (x[k]) ≤ max{(λ∗)kV (x[0]), 1}.

This implies that the entire system is UUB.

Theorem 4. The system is UUB under a switching signal σ(k) if there exist two scalars λ∗ and λ such that the K+(k) and Nσ (k)
satisfy the following two conditions:

(1) K
+(k)
k ≤

ln λs+ln λ
ln λs+ln λu

holds for some scalar λs < λ < 1;
(2) the average dwell time is not smaller than τ ∗a , i.e., Nσ (k) ≤

k
τ∗a
, where τ ∗a =

lnµ
ln λ∗−ln λ .

Compared with the result for all subsystems being UUB, the switching signals in this section have one condition on the
percentage of the activation periods of unstable subsystems in addition to a similar average dwell time condition. In other
words, a switched system that stays too long in the unstable mode may lead to an unbounded disturbance attenuation
performance.

4.2. Continuous-time case

4.2.1. Polyhedral Lyapunov-like functions
First, the definition of Lyapunov-like functions for the continuous-time unstable subsystems can be given as follows.

Definition 8. A Lyapunov-like function outside S for the continuous-time subsystem (1) can be defined as a continuous
function Ψq : Rn → R+ such that N̄[Ψq, κ] ⊂ S, for some positive scalar κ , for which the following condition holds: if
x 6∈ N̄[Ψq, κ] then there exists βq > 0 such thatD+Ψq(x(t)) ≤ βqΨq(x(t)). �

Applying the procedure (13) to a continuous-time unstable subsystem’s EAS (10), onemay obtain a λ-expansive set with
respect to the EAS (10). Similar to the case of contractive set, we may induce a Lyapunov-like function from Pλ for the
continuous-time unstable subsystem (1) as the following result implies.

Proposition 9. Given a C-set S, if the procedure (13) terminates and returns a nonempty C-set Pλ for some λ > 1 and τ > 0,
then the Minkowski function of Pλ, ΨPλ(x), is a Lyapunov-like function for the system (1) outside Pλ ⊆ S. In particular,
N̄[ΨPλ , 1] ⊂ S, and for x 6∈ N̄[ΨPλ , 1],D

+ΨPλ(x(t)) ≤
λ−1
τ
ΨPλ(x(t)). �

Proof. Since Pλ is a nonempty C-set, for x 6∈ N̄[ΨPλ , 1], there exists a µ ≥ 1 such that x lies on the boundary of set
N̄[ΨPλ , µ], i.e., x ∈ ∂N̄[ΨPλ , µ]. In addition, Pλ is λ-expansive with respect to system (10), so is µPλ for µ ≥ 1. Therefore,
for x ∈ ∂N̄[ΨPλ , µ], postq(x,W,D) ⊆ λµPλ. Hence, forw ∈ W , d ∈ D , ΨPλ([I + τA(w)]x+ τEd) ≤ λΨPλ = λµ holds for
some τ > 0. So,

ΨPλ([I + τAq(w)]x+ τEqd)− ΨPλ(x)
τ

≤
λ− 1
τ

ΨPλ(x)

holds for some τ > 0. Since ΨPλ(x) is a convex function, and ΨPλ(x) = µ is finite, then the difference quotient is a
nondecreasing function for τ [28, Section 23]. In addition,D+ΨPλ(x(t)) exists and

D+ΨPλ(x(t)) = inf
τ>0

ΨPλ(x+ τ [Aq(w)x+ Eqd])− ΨPλ(x)
τ

≤
λ− 1
τ

ΨPλ(x).



288 H. Lin, P.J. Antsaklis / Nonlinear Analysis: Hybrid Systems 4 (2010) 279–290

Since this inequality holds for anyw ∈ W and d ∈ D , the Dini derivative

D+ΨPλ(x(t)) ≤
λ− 1
τ

ΨPλ(x(t)),

at point x(t) = x. Since x is an arbitrary point outside Pλ, we conclude that the function ΨPλ(x) is a Lyapunov-like function
for system (1) outside Pλ ⊆ S. �

4.2.2. UUB analysis
For any switching signal σ(t) and any t > 0, let Ki(t) denote the total period in which the qi-th subsystem is activated

during [0, t). Define K−(t) =
∑
i≤r, qi∈Q

Ki(t), which stands for the total activation period of the UUB subsystems. On
the other hand, K+(t) =

∑
i>r, qi∈Q

Ki(t) denotes the total activation period of the non-UUB subsystems. We have
K−(t)+ K+(t) = t .
Similarly, define the multiple Lyapunov function candidate as

V (x(t)) = Ψσ(t)(x(t)).

For any t satisfying t0 = 0 < · · · < ti ≤ t < ti+1, we obtain

V (x(t)) ≤
{
max{e−βqi (t−ti)Ψqi(x(ti)), 1} qi ≤ r
max{eβqi (t−ti)Ψqi(x(ti)), 1} r < qi ≤ N.

Let us define βs = min1≤i≤r{βqi}, and βu = maxr<i≤N{βqi}. Also, there exists a constant scalar µ such that Ψqi(x) ≤ µΨqj(x)
and Ψqj(x) ≤ µΨqi(x), for all x ∈ Rn. The scalar µ can be selected as in the previous section.
Therefore, by induction, we obtain

V (x(t)) ≤ max{e−βsK
−(t)+βuK+(t)µNσ (t)V (x(0)), 1}.

If there exists a positive scalar β < βs such that

K+(t)
t
≤
βs − β

βu + βs
(20)

which is a condition on the percentage of time interval that the unstable subsystems are activated, then

e−βsK
−(t)+βuK+(t) ≤ e−βt ,

and thus V (x(t)) ≤ max{e−βtµNσ (t)V (x(0)), 1}. In addition, if

Nσ (t) ≤
t
τ ∗a
, τ ∗a =

lnµ
β − β∗

(21)

for some positive scalar β∗ < β , which represent a bounded average dwell time requirement. This implies e−βtµNσ (t) ≤
e−β

∗t . So, V (x(t)) ≤ max{e−β
∗tV (x(0)), 1}, and the UUB of (2) follows.

Theorem 5. The switched system (2) achieves a finite asymptotic disturbance attenuation level under switching signals

(1) with percentage of time interval that the unstable subsystems are activated less than βs−β
βu+βs

in the sense of (20), and

(2) with average dwell time no less than lnµ
β−β∗

in the sense of (21).

5. Concluding remarks

In this paper, we have investigated the asymptotic disturbance attenuation properties for a class of switched linear
systems with parametric uncertainties and exterior disturbances under various switching signals. Both continuous-time
and discrete-time cases were considered. The contributions of the paper are threefold. First, the equivalence between the
asymptotic stability of arbitrary switching systems and the robust stability of a corresponding LTV systemwas emphasized,
based on which necessary and sufficient conditions on the subsystems’ dynamics were presented for the switched systems
to achieve a finite disturbance attenuation level under arbitrary switching. Secondly, restrictions on the switching signals to
guarantee the finiteness of the disturbance attenuation level were identified even when there are unstable subsystems.
Thirdly, new concepts and a construction procedure for polyhedral Lyapunov-like functions for unstable systems were
introduced to characterize the explosiveness of their unbounded behaviors.
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Fig. 1. Illustration of the choice for constant µ.

Appendix

A possible choice forµ is the largest value amongΨqj(vj), ∀vj ∈ vert{N̄[Ψqi , 1]}, andΨqi(vj), ∀vj ∈ vert{N̄[Ψqj , 1]}, which
can be justified as follows.
For simplicity, we consider the planar case, while the argument can be directly extended to the higher dimensional case.

In Fig. 1, the rectangle stands for the C-set N̄[Ψqi , 1], while the polygon stands for N̄[Ψqj , 1]. For any point x ∈ R2, the value
Ψqi(x) (Ψqj(x)) is the Minkowski distance from x to the C-set N̄[Ψqi , 1] (or N̄[Ψqj , 1] respectively) by the definition of a gauge
function. In other words,

Ψqi(x) = inf{ξ > 0 : x ∈ ξ N̄[Ψqi , 1]},

Ψqj(x) = inf{ξ > 0 : x ∈ ξ N̄[Ψqj , 1]}.

Assume that the radius starting from the origin and going through point x intersects the bounds of N̄[Ψqj , 1] and N̄[Ψqi , 1]
at points A and B, respectively. From the definition of Minkowski distance, we may obtain that

Ψqi(x) =
‖OX‖
‖OB‖

, Ψqj(x) =
‖OX‖
‖OA‖

,

where ‖ · ‖ stands for the Euclidian norm. Therefore,

Ψqi(x)
Ψqj(x)

=

‖OX‖
‖OB‖
‖OX‖
‖OA‖

=
‖OA‖
‖OB‖

.

Similarly,
Ψqj (x)

Ψqi (x)
=
‖OB‖
‖OA‖ . Therefore, the factor between two gauge functions Ψqi and Ψqj at any point can be ‘‘projected’’ into

the faction of a pair of points at the boundaries of the two C-sets N̄[Ψqi , 1] and N̄[Ψqj , 1]. Note that the pair is not arbitrary:
the line connecting these two points should go through the origin and the point x of concern.
Next, we will focus on the boundaries of the C-sets N̄[Ψqi , 1] and N̄[Ψqj , 1] and prove that the maximum value of the

faction constant µ occurs at the vertices. To see this, we zoom out the triangle 4OCVi, where point C is the intersection
point of two boundaries of N̄[Ψqi , 1] and N̄[Ψqj , 1], and Vi is a vertex of N̄[Ψqj , 1] here. In the zoomed triangle, starting from
point A draw a line parallel to CB and intersect line OVi at A′. Assuming line CB intersects line OVi at B′, it is easy to show
that

Ψqi (x)
Ψqj (x)

=
‖OA‖
‖OB‖ =

‖OA′‖
‖OB′‖ ≤

‖OVi‖
‖OB′‖ =

Ψqi (vi)

Ψqj (vi)
= Ψqi(vi), which holds for any pair of A and B within the cone OCVi. Therefore,

the maximum of the faction
Ψqi (x)
Ψqj (x)

occurs at the vertex Vi. The arguments can be easily extended to more general cases. This

explains why we choose µ as the largest value among Ψqj(vj), ∀vj ∈ vert{N̄[Ψqi , 1]}, and Ψqi(vj), ∀vj ∈ vert{N̄[Ψqj , 1]}.
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