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Abstract— In this paper, we devote to the study of inter-
connection topologies for the coordinated control of multi-
agent networks. It turns out that downer and Perron branches
contribute to the understanding of coordinated behavior of
multiple agents from the view point of interconnection topology
structures. In particular, we show that the uncontrollability of
multi-agent systems is equivalent to the existence of a downer
branch when the interconnection graph is a tree. For general
interconnection graph, it is shown that the existence of a Perron
branch leads to the uncontrollability of the system in most cases.
In the latter case, two equivalent conditions are also given.
When there are edge failures occurred in the graph, a result is
presented to cope with the robustness of the controllability. In
all the results, the selection of leaders is outlined.

Index Terms— Multi-agent networks. Multi-agent controlla-
bility. Interconnection topology.

I. INTRODUCTION

Recent years have seen an increased interest in the study of
coordination and control of multi-agent systems, see e.g. [1],
[7], [22]. The study is inspired by numerous applications of
such networks in various fields including, e.g. the cooperative
control and coordination of multiple robots and unmanned
aerial vehicles, and the investigation of the problems emerged
from the swarming behavior of biological systems, such as
flocks of birds, colonies of bacteria, etc., where relatively
simple creatures can collectively perform complex, meaning-
ful, and intelligent tasks.

With nodes representing dynamic units and links indicating
the interconnections between them, graph theory proves to be
a natural framework for modeling and treatment of networks
of dynamic agents. The characterization of properties of such
systems then relies closely on the structure and interconnec-
tion topology of the graph/network. This motivates in the
paper the study of interconnection topology structures for
the coordination control of multi-agent systems. It is known
that the study of controllability is the core of classical control,
playing a fundamental role in analysis and synthesis of linear
control systems. For multi-agent systems, the current version
of controllability was put forward for the first time by Tanner
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in [23], where sufficient and necessary algebraic conditions
were derived. He also pointed out that the lack of a graph
theoretic characterization of the controllability property pre-
vents controllable interconnection topologies from building.
This motivated subsequent analysis of connections between
controllability and interconnection topology structures. In
[20], [8], the authors proved that symmetric structure leads
to uncontrollability. In [15], [10], results were derived for
controllability under switching topology and time-delay and
in [11], [9] uncontrollable topology structures and graph
theoretic properties were revealed. Recently, some other
related results were also reported in e.g. [17], [16], [24], [12],
[18], [19].

The contribution of the paper includes the revealment
of the equivalence between uncontrollability and a downer
branch for tree topologies, as well as a relationship between
Perron branches and uncontrollability of the system for gen-
eral interconnection graph. For the latter case, two equivalent
conditions are also given, which are, respectively, based on
Fiedler vector and algebraic expression. In addition to these
developments, a result on robust controllability is presented
when there are edge failures occurred in the graph.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Graph preliminaries and notations

An undirected graph G consists of a node set V and an edge
set ℰ = {(vi, vj)∣vi, vj ∈ V, i ∕= j}. vi and vj are neighbors
if (vi, vj) ∈ ℰ . The number of neighbors of vi is its degree,
denoted by di. A path vi0vi1 ⋅ ⋅ ⋅ vis is a finite sequence of
nodes such that vik−1

and vik are neighbors k = 1, ⋅ ⋅ ⋅ , s.
A graph G is connected if there is a path between any pair
of distinct nodes. For two graphs G = (V, ℰ),G′ = (V ′, ℰ ′),
we call G′ a subgraph of G, denoted by G′ ⊆ G, if V ′ ⊆ V
and ℰ ′ ⊆ ℰ . A subgraph G′ is said to be induced from G
if it is obtained by deleting a subset of nodes and all the
edges connecting to those nodes. An induced subgraph of an
undirected graph, which is maximal and connected, is said
to be a connected component of the graph.

Throughout the paper, all graphs are assumed to be simple,
i.e., they have no multiple edges and loops. By ℒ(G) (or
simply, ℒ), we mean the Laplacian matrix of G, defined by
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ℒ = D − A, where D is the diagonal degree matrix of G
and A is the adjacency matrix of G. Since ℒ is a positive
semidefinite matrix with the smallest eigenvalue 0, it can
be assumed that the eigenvalues of ℒ are 0 = �1 ≤ �2 ≤
⋅ ⋅ ⋅ ≤ �n. The second smallest eigenvalue of ℒ, denoted by
a(G), is said to be the algebraic connectivity of G. Fiedler
showed that a(G) is 0 if and only if G is disconnected [6].
The eigenvectors corresponding to a(G) are called Fiedler
vectors of the graph G. For a vector Y, the notation Y (v)
represents the coordinate of Y corresponding to the vertex
v. With respect to an eigenvector Y of ℒ, a vertex v is said
to be nonzero (zero, negative, positive) if Y (v) ∕= 0 (Y (v) =
0, Y (v) < 0, Y (v) > 0, respectively). A subgraph ℋ of G
containing a nonzero vertex of G is called a nonzero subgraph
of G. A subgraph ℋ of G is called positive if each vertex of
ℋ is positive. Denote by �(B) the smallest eigenvalue of a
square symmetric matrix B.

Let W be a set of vertices and edges in G, we denote by
G ∖W the graph obtained by deleting all the elements of W
from G. It is understood that when a vertex is deleted, all
edges incident with it are deleted as well, but when an edge
is deleted, the vertices incident with it are not. By a branch
at vertex set W of G we mean a component of G ∖ W. A
vertex v of G is a point of articulation (or cutpoint) if G ∖ v,
the graph formed by removing v and its incident edges, is
disconnected. A matrix A = (aij) is called an M -matrix if
aij ≤ 0 whenever i ∕= j and all principal minors of A are
positive.

B. Problem formulation
Consider the multi-agent system given by{

ẋi = ui, i = 1, . . . , N

ẋN+j = uN+j , j = 1, . . . , l
(1)

where N and l represent the number of followers and leaders,
respectively; and xi indicates the state of the ith agent, i =
1, ⋅ ⋅ ⋅ , N + l.

In [23], the interconnection graph G = {V, ℰ} is intro-
duced, which is an undirected graph consisting of a set of
nodes, V = {v1, . . . , vN , vN+1, . . . , vN+l}, indexed by the
agents in the group; and a set of edges, ℰ = {(vi, vj) ∈
V × V∣ vi ∼ vj}, containing unordered pairs of nodes that
correspond to interconnected agents.

In [11], the interconnection graph G is assumed to be
connected. The controllability problem can be studied under
this assumption. The topology of an interconnection graph G
is said to be fixed if each node of G has a fixed neighbor set.
Let Ni = {j ∣ vi ∼ vj ; j ∕= i}, which is the neighboring set
of vi; and define the protocol as follows:

ui = −
∑
j∈Ni

(xi − xj). (2)

Take xN+1, ⋅ ⋅ ⋅ , xN+l to play leaders role, and rename the
agents as yi

Δ
=xi, i = 1, . . . , N ; zj

Δ
=xN+j , j = 1, . . . , l. Let

y, z and u denote the stack vectors of all yi, zj , and uN+j ,
respectively, i = 1, ⋅ ⋅ ⋅ , N ; j = 1, . . . , l. In this leader-
follower framework, the interconnections with the leaders are
assumed to be unidirectional, that is, the leaders’ neighbors
still obey (2), but the leaders are free of such a constraint
and are allowed to pick uN+j arbitrarily, j = 1, . . . , l. Then,
under protocol (2), the multi-agent system (1) reads[

ẏ
ż

]
= −

[
ℱ ℛ
0 0

] [
y
z

]
+

[
0
u

]
,

where ℱ is the matrix obtained from the Laplacian ℒ of G
after deleting the last l rows and columns. ℛ is the N × l
submatrix consisting of the first N elements of the deleted
columns. The dynamics of the followers corresponding to the
y component of the equation is extracted as

ẏ = −ℱy −ℛz. (3)

Definition 1: The multi-agent system (1) is said to be
controllable under leaders xN+j , j = 1, . . . , l, and fixed
topology if system (3) is controllable under control input z.

III. CONTROLLABILITY AND TOPOLOGY STRUCTURES

A. Robust controllability and the same neighbor set

One kind of communication uncertainty can be measured
by the node or edge failures of the interconnection graph. In
what follows, we consider the controllability problem with
respect to edge failures occurred in the graph which contains
a number of vertices with the same neighbor set. That is,
we consider how about the controllability/uncontrollability if
some edges are added or deleted in the interconnection graph.

The following lemma plays an important role in the
development of the results.

Lemma 1: [11] The multi-agent system with (undirected)
weighted interconnection graphs is controllable if and only
if there is no eigenvector of Laplacian matrix ℒ taking 0 on
the elements corresponding to the leaders.

Definition 2: The � nodes vi1 , ⋅ ⋅ ⋅ , vi� in the graph G =
{V, ℰ} are said to have the same neighbor set if each of
these nodes has the same set of neighbors {vi�+1

, ⋅ ⋅ ⋅ , vi�+%},
where vij ∈ V, iℎ ∕= ij for ∀ℎ ∕= j.

The concept of the same neighbor set is meaningless for
a single node case, i.e., � = 1. So � ≥ 2.

Proposition 1: [11] The multi-agent system (1) is un-
controllable if the following two conditions are fulfilled
simultaneously:

(i) there are nodes with the same neighbor set in the
interconnection graph G;

(ii) leaders are selected as follows:
∙ when � = 2, i.e., there are only two nodes with the

same neighbor set, the leaders are to be selected
from the remaining nodes in G other than the two
nodes with the same neighbor set.
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∙ when � ≥ 3, the number of leaders is not greater
than � − 2 and the leaders are to be selected
arbitrarily.

Lemma 2: (Lemma 2.1 of [5]) Let G = {V, ℰ} be
a graph with vertex subset V ′ = {v1, ⋅ ⋅ ⋅ , v�} having
the same set of neighbors {v�+1, ⋅ ⋅ ⋅ , v�+%}, where V =
{v1, ⋅ ⋅ ⋅ , v�, ⋅ ⋅ ⋅ , v�+%, ⋅ ⋅ ⋅ , vn}. Then the Laplacian matrix
of the graph G has at least �− 1 equal eigenvalues and they
are all equal to the cardinality % of the neighbor set. Also
the corresponding �− 1 eigenvectors are [1,−1, 0, ⋅ ⋅ ⋅ , 0]T ,
[1, 0,−1, 0, ⋅ ⋅ ⋅ , 0]T , ⋅ ⋅ ⋅ , [1, 0, ⋅ ⋅ ⋅ ,−1︸ ︷︷ ︸

�

, 0, ⋅ ⋅ ⋅ , 0]T .

Lemma 3: (Theorem 2.2 of [21]) Suppose i and j are fixed
but arbitrary nonadjacent vertices of G. Let G+ = G + {i, j}
be the graph obtained from G by adding an edge {i, j}. Then
N(i) = N(j) if and only if the spectrum of ℒ(G+) overlaps
the spectrum of ℒ(G) in n− 1 places.

Remark 1: The result inspires the following considera-
tions:
∙ It follows from the proof of Lemma 3 that N(i) = N(j)

if and only if ℒ(G)K = Kℒ(G) holds not only for the
case of two vertices with the same neighbor set but also
holds for the general case when vertices have the same
neighbor set. Note that the same neighbor set provides a
graph theoretical characterization for uncontrollability in
our recent work [11]. Then ℒ(G)K = Kℒ(G) presents
an algebraic characterization for the same neighbor set,
which also applies to the general case.

∙ The result relates the same neighbor set to the spectrum
of ℒ(G+) and ℒ(G). This may bring some ideas for the
understanding of controllability problem (see e.g., the
following Theorem 1).

Lemma 4: (Theorem 3.3 of [4]) Let G = (V, ℰ) be a
graph with a vertex subset V ′ = {v1, v2, ⋅ ⋅ ⋅ , v�} having
the same set of neighbors {v�+1, ⋅ ⋅ ⋅ , v�+%}, where V =
{v1, ⋅ ⋅ ⋅ , v�, ⋅ ⋅ ⋅ , v�+%, ⋅ ⋅ ⋅ , vn}. Also, let ℰ+ = ℰ ∪ ℰ ′,
where ℰ ′ ⊆ V ′ × V ′. If G′ = (V ′, ℰ ′) has eigenvalues
a1 ≥ a2 ≥ a3 ≥ ⋅ ⋅ ⋅ ≥ a� = 0, then the eigenvalues
of ℒ(G+), where G+ = (V, ℰ+), are as follows: those
eigenvalues of the graph G = (V, ℰ), which are equal to %
(�− 1 in number), are incremented by ai, i = 1, ⋅ ⋅ ⋅ , �− 1,
and the remaining eigenvalues are same.

Theorem 1: Let G be a graph with a vertex subset V ′ =
{v1, ⋅ ⋅ ⋅ , v�} having the same set of neighbors. Denote by
G+ an interconnection graph which is obtained from G by
adding edges between vertices in V ′, and let G+− be the
graph obtained from G by adding or deleting edges between
vertices in V ∖ V ′. Then, the following assertions hold:
(i) A multi-agent system with interconnection graph G+ is

uncontrollable if leaders are selected from V ∖ V ′.
(ii) In case � ≥ 4 and G+ = G + {i, j}, where vi, vj ∈ V ′,

i.e., G+ is the graph obtained from G by adding a single
edge {i, j}, then the system with interconnection graph

G+ is uncontrollable under any single leader.
(iii) Proposition 1 still holds for a multi-agent system with

interconnection graph G+−, as well as for a multi-agent
system with interconnection graph G+ = G + {i, j} in
which there are � − 2 vertices with the same neighbor
set, where vi, vj ∈ V ′.

Proof (i) It follows from the proof of Lemma 4 in
[4] that if x′i = [xi,1, ⋅ ⋅ ⋅ , xi,�]T is an eigenvector of G′
associated with the eigenvalue ai, the corresponding xi =
[xi,1, ⋅ ⋅ ⋅ , xi,�, 0, ⋅ ⋅ ⋅ , 0︸ ︷︷ ︸

n−�

]T is an eigenvector of G+ associated

with the eigenvalue % + ai, i = 1, ⋅ ⋅ ⋅ , � − 1. This, together
with Lemma 1, yields the conclusion.

(ii) By Lemma 2, % is an eigenvalue of G with multiplicity
� − 1. Lemma 3 then implies that % is an eigenvalue of
G+ with multiplicity at least � − 2. Accordingly, � is a
multiple eigenvalue of G+ since � ≥ 4. Then ℒ(G)+ has two
linearly independent eigenvectors. With respect to any fixed
coordinate i, an eigenvector of ℒ(G)+ can be generated by
using a linear combination of these two linearly independent
eigenvectors. Combining this with Lemma 1 gives rise to the
assertion that the system with interconnection graph G+ is
uncontrollable under any single leader.

(iii) The first assertion of (iii) follows from the observation
that the same neighbor set is unaffected by adding or deleting
edges between vertices in V ∖V ′. The second assertion is true
because after the connection of vertices vi, vj with a single
edge {i, j}, the remaining �−2 vertices in V ′ have the same
neighbor set in G + {i, j}.
B. Perron branch, Fiedler vectors and controllability

Lemma 1 implies that controllability closely relates to
the eigenvectors of Laplacian matrix. This inspires the in-
vestigation of controllability through Laplacian eigenvectors.
In particular, we study controllability in this subsection by
considering Fiedler vectors of a connected graph.

A Perron branch at vertex set S is a connected component
of G ∖ S with the smallest eigenvalue of the corresponding
principle submatrix of ℒ(G) less than or equal to a(G).

Lemma 5: [2] Let G be a connected simple graph and a(G)
the algebraic connectivity. Let W be a set of vertices of G
such that G ∖W is disconnected. Let G1,G2 be two compo-
nents of G ∖ W and let ℒ1,ℒ2 be the principal submatrices
of ℒ corresponding to G1,G2, respectively. Suppose �(ℒ1) ≤
�(ℒ2). Then either �(ℒ2) > a(G) or �(ℒ1) = �(ℒ2) = a(G).

Lemma 6: [2] Let G be a connected graph and Y be a
Fiedler vector. Let W be a nonempty set of vertices of G
such that Y (u) = 0 for all u ∈ W and suppose G ∖ W is
disconnected with at least two nonzero components, G1 and
G2. Let ℒi and Yi be the principal submatrix of ℒ and the
subvector of Y corresponding to Gi, i = 1, 2. Then �(ℒ1) =
�(ℒ2) = a(G).

Lemma 7: [20] The multi-agent system is controllable if
and only if none of the eigenvectors of ℱ is (simultaneously)
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orthogonal to (all columns of) ℛ. Moreover, if ℱ does not
have distinct eigenvalues, then the system is uncontrollable.

A follower subgraph Gf of the interconnection graph G
is the subgraph induced by the follower set Vf . Similarly,
A leader subgraph Gl is the one induced by the leader set
Vl. Assume that Gf consists of  connected components
Gc1 , . . . , Gc , with {v1, . . . , vn1}, {vn1+1, . . . , vn2}, . . . ,
and {vn−1+1, . . . , vN} being their node sets, respectively.
Denote by ℒ[i1, ⋅ ⋅ ⋅ , im] the principal submatrix obtained by
selecting the i1th, . . . , imth rows and columns of ℒ. Then
ℒ[ni−1 + 1, ⋅ ⋅ ⋅ , ni] corresponds to Gci , where n0 = 0, n =
N, i = 1, ⋅ ⋅ ⋅ , . The following assertion is a combination
of Lemmas 1, 2 in [9].

Lemma 8: ℒ[1, ⋅ ⋅ ⋅ , N ] is positive defi-
nite and ℒ[1, ⋅ ⋅ ⋅ , N ] = diag{ℒ[1, ⋅ ⋅ ⋅ , n1],
ℒ[n1 + 1, ⋅ ⋅ ⋅ , n2], ⋅ ⋅ ⋅ , ℒ[n−1 + 1, ⋅ ⋅ ⋅ , N ]}, where
ℒ[1, ⋅ ⋅ ⋅ , n1], ⋅ ⋅ ⋅ ,ℒ[n−1 + 1, ⋅ ⋅ ⋅ , N ] are all positive
definite submatrices too.

Denote by V and Vci the vertex set of G and Gci ,
respectively. Let V ∖ {Vci ,Vcj} represent the vertex set V
except those of Vci and Vcj , where i, j ∈ {1, ⋅ ⋅ ⋅ , }.

Theorem 2: For a multi-agent system with interconnection
graph G. The following statements are equivalent:
(i) there are two principal submatrices ℒ[ni−1+1, ⋅ ⋅ ⋅ , ni]

and ℒ[nj−1 + 1, ⋅ ⋅ ⋅ , nj ] with �(ℒ[nj−1 + 1, ⋅ ⋅ ⋅ , nj ])
≤ a(G), where �(ℒ[ni−1 + 1, ⋅ ⋅ ⋅ , ni]) ≤
�(ℒ[nj−1 + 1, ⋅ ⋅ ⋅ , nj ]), i ∕= j, i, j ∈ {1, ⋅ ⋅ ⋅ , };

(ii) Gci and Gcj are Perron branches with the smallest
eigenvalue of the corresponding principal submatrix of
ℒ equal to a(G);

(iii) there is a Fiedler vector with the coordinates correspond-
ing to the leader vertices in Vl being zero and there are
two nonzero components in G ∖ Gl.

Moreover, the following assertions hold:
(a) the system is uncontrollable if any of the above condi-

tions (i)-(iii) are satisfied, with no matter how leaders
are selected from the vertex set V ∖ {Vci ,Vcj};

(b) the system is uncontrollable if there exists some Gc ,
which is a Perron branch with the smallest eigenvalue
of the corresponding principal submatrix of ℒ equal
to a(G), where  ≥ 2. In this case, the system is
uncontrollable with no matter how leaders selected from
V ∖ {Vci ,Vcj}, where arbitrary i, j ∈ {1, ⋅ ⋅ ⋅ ,  }, i ∕= j.

Proof The result will be proved according to the following
steps: (i) ⇒ (ii) ⇒ (iii) ⇒ (i). The uncontrollability of the
system will be shown in the proof procedure.

Denote ℱi
Δ
=ℒ[ni−1 + 1, ⋅ ⋅ ⋅ , ni]. Then, by Lemma 8,

ℱ = diag{ℱ1, ⋅ ⋅ ⋅ ,ℱm}. Since �(ℱi) ≤ �(ℱj) and �(ℱj) ≤
a(G), it follows from Lemma 5 that �(ℱi) = �(ℱj) =
a(G). As a consequence, the two components Gci and Gcj
that correspond to ℱi and ℱj , respectively, are both Perron
branches and one can get from Lemma 7 that the system is
uncontrollable. In the sequel, in addition to the proof of (ii)

⇒ (iii) ⇒ (i), we will also point out how to select leaders
so that the system is uncontrollable.

Since the interconnection graph G is connected, Lemma
8 tells us that both ℱi and ℱj are nonsingular sym-
metric M -matrices and then its inverse is positive. Let
Zi and Zj be the eigenvector of ℱi and ℱj associ-
ated with a(G), respectively. It follows from the Perron-
Frobenius theorem that both Zi and Zj are positive.
Then the same lines of proof for the second assertion
of Theorem 9 in [3] can be repeated to show that
Xij = [0T , ⋅ ⋅ ⋅ , 0T , ZTi , 0T , ⋅ ⋅ ⋅ , 0T ,−kZTj , 0T , ⋅ ⋅ ⋅ , 0T ]T
is a Fiedler vector of the interconnection graph G, where

k =

∑
v∈Gci

Zi(v)∑
v∈Gcj

Zj(v) . The definition of k employs the fact that

the entries of Zj agree in sign. By Lemma 1, the system is
uncontrollable no matter how the leaders are selected from
the vertex set V ∖ {Vci ,Vcj}. Note that by Lemma 8, the
Laplacian has the form

ℒ =

⎡⎢⎢⎢⎢⎢⎢⎣

ℱ1 0 ⋅ ⋅ ⋅ 0 ℛ1

0
. . . . . .

...
...

...
. . . ℱ−1 0

...
0 ⋅ ⋅ ⋅ 0 ℱ ℛ
ℛT1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ℛT ℒ+1

⎤⎥⎥⎥⎥⎥⎥⎦ , (4)

Then the construction of Xij in [3] implies that the coordi-
nates of Xij corresponding to the leader vertices in Vl are
always 0′s with respect to different ℱi and ℱj (if there is
another pair of ℱi and ℱj with the same property). Since
Zi and Zj in the Fiedler vector Xij are, respectively, the
positive eigenvectors of ℱi and ℱj , the corresponding Gci
and Gcj are two nonzero components in G ∖ Gl.

Now, suppose condition (iii) holds. In Lemma 6, we take
W = Vl, and denote the two nonzero components by G1,G2.
The conclusions (i) and (ii) then follow from Lemma 6.

Suppose there exists some Gc which is a Perron branch
with the smallest eigenvalue of the corresponding principal
submatrix of ℒ equal to a(G). Then �(ℱ ) = a(G). Re-
peatedly applying Lemma 5 gives rise to �(ℱ1) = ⋅ ⋅ ⋅ =
�(ℱ ) = a(G),  ∈ {1, ⋅ ⋅ ⋅ , }. Since the system matrix
is ℱ = diag{ℱ1, ⋅ ⋅ ⋅ ℱ}, a(G) is an eigenvalue of ℱ
with multiplicity  . By Lemma 7, the multi-agent system
is uncontrollable when  ≥ 2. Moreover, since �(ℱ1) =
⋅ ⋅ ⋅ = �(ℱ ) = a(G), the previous arguments show that the
aforementioned Xij is a Fiedler vector of ℒ, where arbitrary
i, j ∈ {1, ⋅ ⋅ ⋅ ,  }, i ∕= j. The system is then uncontrollable
with leaders selected from an arbitrary V ∖ {Vi,Vj}. Note
that in this case V ∖ {Vi,Vj} varies with respect to different
pair of i, j ∈ {1, ⋅ ⋅ ⋅ ,  }.

Remark 2: It can be seen that condition (ii) is equivalent to
the condition involved in the assertion (b). The assertion (b) is
stated independently in Theorem 2 to emphasize the fact that
the existence of a Perron branch with the smallest eigenvalue
of the corresponding principal submatrix of ℒ equal to a(G)
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leads to the uncontrollability of the system in most cases,
i.e., when  ≥ 2. It can be understood that to satisfy the
conditions in the above Theorem 2, the leader vertex set Vl
should contain an articulation.

C. Downer branch and controllability
This subsection devotes to the graph theoretical inter-

pretation of the controllability. In particular, the graphical
implication of the algebraic condition given in Lemma 7
will be illustrated. The following notations are required.
Denote by A(�)(A[�]) the principal submatrix of A resulting
from deletion (retention) of the rows and columns �, where
� ⊆ {1, ⋅ ⋅ ⋅ , N + l} is an index set of agents. In case � is
a singleton {i}, the A({i}) is abbreviated to A(i). We see
that A(v) corresponds to the subgraph T − v of T . Denote
by mA(�) the multiplicity of an eigenvalue � of A.

Definition 3: We call a branch T0 of T at v in the
direction of u0, satisfying the requirement mA[T0](�) =
mA[T0∖u0](�) + 1, a downer branch at v for the eigenvalue
�, where u0 is a neighbor of v in T0; the vertex u0 is called
a downer vertex.

Theorem 3: For a multi-agent system with tree intercon-
nection graph, the system is uncontrollable if and only if
there is a downer branch at some vertex.

Proof The Laplacian can be written as ℒ =

[
ℱ ℛ
ℛT ℒl

]
.

By Lemma 7, the system is uncontrollable if and only if there
is an eigenvector x of ℱ , which is (simultaneously) orthog-
onal to ℛ, i.e., ℱx = �x, xTℛ = 0. Since ℒ[xT , 0]T =
[xTℱT , xTℛ]T , we see that

ℱx = �x, xTℛ = 0⇐⇒ ℒ[xT , 0]T = �[xT , 0]T . (5)

In the sequel, we are to show the equivalence between the
right hand side of (5) and the existence of a downer branch.

Suppose Laplacian ℒ has an eigenvector x̃
Δ
=[xT , 0]T as-

sociated with the eigenvalue �, where the coordinates of
x̃ corresponding to the leader agents are zeros. Since x̃ is
a nonzero vector and the tree interconnection graph T is
connected, there exists a pair of adjacent vertices k and l
with xk = 0, xl ∕= 0. (Note that the index k may be different
from the leader agent n.) Let ℬ be the branch of T at k that
contains vertex l. Then ℒx̃ = �x̃ implies

ℒ[ℬ]x̃[ℬ] = �x̃[ℬ], (6)

and the entry of x̃ corresponding to the vertex l is nonzero,
where ℒ[ℬ] represents the principal submatrix of ℒ whose
rows and columns correspond to the vertices of ℬ and x̃[ℬ]
has the meaning in the same vein. Assume, without loss of
generality, that the first entry of x̃[ℬ] is nonzero (Note that the
first entry of x̃[ℬ] corresponds to the vertex vl with xl ∕= 0).
It follows from (6) that (ℒ[ℬ]−�I)x̃[ℬ] = 0, and accordingly
the 1th column of ℒ[ℬ] − �I is a linear combination of all
the other columns of ℒ[ℬ]− �I. As a consequence,

dim(CS(ℒ[ℬ]−�I)) = dim(CS((ℒ[ℬ]−�I)[:, {1}])), (7)

where CS(ℒ[ℬ]−�I) denotes the column space of ℒ[ℬ]−�I;
{1} represents the index set {1, ⋅ ⋅ ⋅ , n}∖{1}, and (ℒ[ℬ] −
�I)[:, {1}] is the submatrix of ℒ[ℬ] − �I consisting of
columns indexed by {1}. Let �(A) represent the nullity of
matrix A. We have from (7) that

�((ℒ[ℬ]− �I)[:, {1}])
=(∣ℬ∣ − 1)− rank((ℒ[ℬ]− �I)[:, {1}])
=�((ℒ[ℬ]− �I))− 1, (8)

where ∣ℬ∣ is the cardinality of branch ℬ. Since ℒ[ℬ] − �I
is symmetric and the 1th column of ℒ[ℬ] − �I is a linear
combination of all the other columns of ℒ[ℬ] − �I, the
1th row of (ℒ[ℬ] − �I)[:, {1}] is a linear combination of
(ℒ[ℬ] − �I)(1). Accordingly, dim(RS((ℒ[ℬ] − �I)(1))) =
dim(RS((ℒ[ℬ]−�I)[:, {1}])), where RS(⋅) denotes the row
space of a matrix. Hence

�((ℒ[ℬ]− �I)(1)) = �((ℒ[ℬ]− �I)[:, {1}]). (9)

Moreover, by (8) and (9),

�((ℒ[ℬ]− �I)(1)) = �((ℒ[ℬ]− �I))− 1. (10)

That is, mℒ[ℬ](1)(�) = mℒ[ℬ](�) − 1. Hence, vertex v1 is
a downer vertex of ℒ[ℬ], and accordingly, ℬ is a downer
branch.

The above arguments show that ℒ[xT , 0]T = �[xT , 0]T

implies the existence of a downer branch at vertex vk in
the direction of vl, where the corresponding entries satisfy
xk = 0, xl ∕= 0.

For the contrary, assume ℬ is a downer branch at vertex
v. Below, we shall first show ev /∈ CS(ℒ[ℬ] − �I), where
ev is the identity vector associated with vertex v. This will
be proved by contradiction. Suppose ev ∈ CS(ℒ[ℬ] − �I).
Since ℒ[ℬ] − �I is symmetric, eTv ∈ RS(ℒ[ℬ] − �I), and
each vector in RS(ℒ[ℬ] − �I) is orthogonal to the vectors
in NS(ℒ[ℬ] − �I). So, each vector in NS(ℒ[ℬ] − �I) is
orthogonal to ev, and accordingly, NS(ℒ[ℬ]−�I) ⊆ e⊥v . As
a consequence, the coordinate corresponding to the vertex
v in each vector in NS(ℒ[ℬ] − �I) is equal to zero. Let
� ∈ NS(ℒ[ℬ] − �I). One has ℒ[ℬ]� = ��. Since the entry
corresponding to the vertex v in � is zero, it follows that
ℒ[ℬ](v)�(v) = ��(v). Hence, each eigenvalue � of ℒ[ℬ] is
also an eigenvalue of ℒ[ℬ](v). Consequently, mℒ[ℬ](v)(�) ≥
mℒ[ℬ](�), a contradiction to the fact that v is a downer vertex
of ℬ, i.e., mℒ[ℬ](v)(�) = mℒ[ℬ](�)− 1.

Since ev /∈ CS(ℒ[ℬ] − �I) and v is labeled as the first
vertex in ℬ, the first column of (ℒ−�I)[{1}, :] is not in the
span of the remaining columns of (ℒ − �I)[{1}, :], where
(ℒ− �I)[{1}, :] denotes the submatrix of ℒ− �I consisting
of rows indexed by {1}. Assume that ℒ − �I has a block
decomposition form as follows:

ℒ − �I =

[
l11 − � ℎT

ℎ ℒ(1)− �I

]
.
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Since ℎ is not a linear combination of ℒ(1)−�I, sequentially
extending ℒ(1) − �I by the column ℎ and then by the row
[l11 − �, ℎT ] increases the rank each time. Thus, rank(ℒ −
�I) = rank(ℒ(1)−�I)+2, which leads to �((ℒ−�I)(1)) =
�((ℒ − �I)) + 1.

Next, we are to show that the first column of ℒ−�I is not
in CS((ℒ−�I)[:, {1}]). Suppose to the contrary that the first
column of ℒ−�I is a linear combination of ((ℒ−�I)[:, {1}]).
Then dim(CS(ℒ − �I)) = dim(CS((ℒ − �I)[:, {1}])).
Consequently, following the same reasonings for (10) gives
rise to �((ℒ − �I)(1)) = �((ℒ − �I))− 1, a contradiction.

Now, it has been shown that the first column of ℒ−�I is
not in CS((ℒ−�I)[:, {1}]). If � ∈ NS(ℒ−�I) whose first
coordinate is nonzero, then the first column of ℒ − �I is in
CS((ℒ−�I)[:, {1}]). This is a contradiction. So, there is an
� ∈ NS(ℒ−�I) with its first entry being zero. Therefore, �
is an eigenvector of ℒ, and then the system is uncontrollable
if the first agent takes the leader role.

The above analysis tells us that the existence of a downer
branch implies that there is an eigenvector of the Laplacian
ℒ, which has at least one zero coordinate. Then the system
is uncontrollable with the agents corresponding to the zero
coordinates taking the leaders role.

Remark 3: Although for the single leader case, Theorem 3
can also be derived by combining Lemma 1 with Corollary
3.3 of [14] and Theorem 8 of [13], the graph theoretical
implication of the algebraic condition presented in Lemma
7 (or Theorem IV.1 of [23]) cannot be fully revealed if the
proof is conducted in this way. To get a direct and intuitive
graphical feeling for the algebraic condition and inspired by
the results in [13], [14], we present here a complete and
detailed proof for the equivalence between the existence of a
downer branch and the above algebraic condition. In addition,
the proof reveals the relationship between uncontrollable
leader vertices and the vertex at which the downer branch
occurs.

IV. CONCLUSIONS

This paper studies interconnection topology structures for
coordination and control of multi-agent networks. Graph
theoretical characterizations are given for the controllability
of multi-agent networks in terms of downer and Perron
branches of an associated interconnection graph. In partic-
ular, a graph theoretical interpretation is presented for the
algebraic condition of controllability with respect to tree
topology. The robustness of multi-agent controllability is also
studied when edge failures occur in the graph.
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