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This paper investigates the stationary oscillation for an impulsive delayed system which represents
a class of nonlinear hybrid systems. First, a new concept of S-stability is introduced for nonlinear
impulsive delayed systems. Based on this new concept and fixed point theorem, the relationship
between S-stability and stationary oscillation �i.e., existence, uniqueness and global stability of
periodic solutions� for the nonlinear impulsive delayed system is explored. It is shown that the
nonlinear impulsive delayed system has a stationary oscillation if the system is S-stable. Second, an
easily verifiable sufficient condition is then obtained for stationary oscillations of nonautonomous
neural networks with both time delays and impulses by using the new criterion. Finally, an illus-
trative example is given to demonstrate the effectiveness of the proposed method. © 2008 Ameri-
can Institute of Physics. �DOI: 10.1063/1.2966113�

The stability analysis of neural networks, such as
Hopfield neural networks, cellular neural networks, and
Cohen–Grossberg neural networks, has been extensively
investigated. It is known that the existence of time delay
may cause oscillations and instability in neural networks.
Hence, the investigation of neural networks with time de-
lay is an important issue. In addition, some biological
neural networks in biology, bursting rhythm models in
pathology, and optimal control models in economics are
usually characterized by abrupt changes of state, which
are also known as impulsive phenomena. Such a phenom-
enon, where sudden and sharp changes occur in a con-
tinuous process, cannot be well described by either a
purely continuous or a purely discrete model. Therefore,
it is important and, in fact, necessary to study a new type
of neural networks, namely impulsive neural networks
with time delay. Although there are a great deal results of
periodicity theory for functional differential equations
(without impulse) and impulsive differential equations
(without delay), respectively, it still remains a very chal-
lenging task to investigate the existence of periodic solu-
tions of dynamical systems with both time delays and
impulses. The difficulty is mainly due to both the discon-
tinuity of solutions and time delays. This motivates our
study of the stationary oscillation for a general nonlinear
impulsive delayed system and its application to chaotic
neural networks. In this paper, a sufficient condition is
presented for the existence of stationary oscillations for
an impulsive delayed system based on a new notion of
S-stability. The obtained criterion is then used to investi-
gate the stationary oscillation for chaotic neural networks
with both time delays and impulses, and an easily verifi-
able sufficient condition is derived. The introduced notion
S-stability could provide a new way to characterize the

existence of stationary oscillation for nonlinear impulsive
delayed systems, and the new criterion of this paper may
be extended to some other chaotic systems.

I. INTRODUCTION

Impulsive effects and time delay exist widely in many
dynamical systems involving a many areas, such as popula-
tion dynamics, economics, automatic control, neural net-
works, and so on. Impulsive delayed differential equations
are effective mathematical models for these kinds of systems
and have attracted increasing research attention due to their
theoretical importance and application potential. It is well
known that the periodic oscillations are important dynamical
behaviors for nonlinear dynamical systems. Interested read-
ers may refer to Refs. 1–3 and references cited therein for the
periodicity theory for functional differential equations �with-
out impulse�, and for impulsive differential equations �with-
out delay� to Refs. 4–8, and references therein. For the case
of functional differential equations �without impulse� and
impulsive differential equations �without delay�, the period-
icity theory has been completely developed. However, it still
remains a very challenging task to investigate the existence
of periodic solutions of dynamical systems with both delays
and impulses. This difficulty is mainly due to both the dis-
continuity of solutions and time delays. Although some in-
teresting results on periodic solutions of impulsive delayed
systems have been reported in Refs. 9–16, the existing work
focuses mainly on some special delayed differential systems
�neural networks� with linear impulses, and the main results
of Refs. 15 and 16 are incorrect. Therefore, it is necessary to
further study the stationary oscillation for general nonlinear
impulsive delayed systems.

On the other hand, neural networks have been exten-
sively and successfully applied in psychophysics, biology,
speech, perception, robotics, adaptive pattern recognition, vi-
sion, and image processing. But the delays often happen and
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they may cause oscillations and instability in neural net-
works. Hence, there are a lot of research results of neural
networks with time delay in recent years; see, for instance,
Refs. 17–20 and references cited therein. In addition, most
neural networks can be classified into two types, continuous
or discrete. However, many real-world systems and natural
processes cannot be simply categorized into one of them.
They may display both continuous and discrete characteris-
tics. Therefore, it is important and, in fact, necessary to study
impulsive neural networks with time delay. To the best of our
knowledge, the global stability and existence of periodic so-
lution are seldom considered for neural networks with both
time delays and impulses.

In this paper, the authors investigate the stationary oscil-
lation for a nonlinear impulsive delayed system and its ap-
plication to chaotic neural networks. First, this paper pre-
sents a sufficient condition for stationary oscillation of the
nonlinear impulsive delayed system based on a new notion
of S-stability. The criterion is then used to investigate the
stationary oscillation for chaotic neural networks with both
time delays and impulses. An easily verifiable criterion for
stationary oscillations of the neural networks is obtained
through proof that the system is S-stable by using the
Lyapunov method. Finally, an illustrative example is given to
demonstrate the effectiveness of the proposed method.

The organization of this paper is as follows. In Sec. II,
we introduce a new concept of S-stability for general nonlin-
ear impulsive delayed system, and present a criterion for
stationary oscillation of the nonlinear impulsive delayed sys-
tem based on the new concept and fixed point theorem. The
criterion is then used to investigate the stationary oscillation
for a chaotic neural network with both time delays and im-
pulses. An easily verifiable sufficient condition is obtained
for stationary oscillation of the neural network, and the mis-
takes of the paper15,16 are pointed out in Sec. III. In Sec. IV,
a numerical example is given to illustrate the effectiveness
and less conservativeness of the obtained result in Sec. IV.
The conclusions are drawn in Sec. V and the possible exten-
sions of the results here are discussed.

II. STATIONARY OSCILLATION

Consider the following general nonlinear impulsive de-
layed system:

ẋ�t� = f�t,xt�, t � tk, k = 1,2, . . . ,

�x�t� = Ik�x�tk
−��, t = tk, �1�

x�t� = ��t�, t � �− �,0� ,

where x�Rn, f :R�Rn→Rn is a piecewise continuous func-
tion, and f�t+� ,x�= f�t ,x�; Ik :Rn→Rn are continuous, xt�s�
=x�t+s�, −��s�0, and there exists a positive integer q such
that tk+q= tk+�, Ik+q�x�= Ik�x� with tk�R, tk+1� tk,
limk→+�tk= +�, �x�tk�=x�tk

+�−x�tk
−�=x�tk

+�−x�tk�. For tk�0
�k=1,2 , . . . �, �0,��� �tk�= �t1 , t2 , . . . tq�, where �tk� are called
the set of jump points.

Let PC��−� ,0� ,Rn�= �� : �−� ,0�→Rn �� be piecewise
continuous with the first kind of discontinuity at the points

tk−�, k� �1,2 , . . . ,q�. Moreover, � is left-continuous at each
discontinuity point. We can easily prove that PC��−� ,0� ,Rn�
is a Banach space under �� � =sup−��	�0 ���	��.

Definition: System �1� is said to be S-stable if there
exists a non-negative continuous function 
�t� on R+,
limt→+�
�t��
�1, such that

�x�t;0,�� − x�t;0,��� � 
�t��� − �� ,

where x�t ;0 ,�� and x�t ;0 ,�� are two arbitrary solutions of
system �1� through �0,�� and �0,��, respectively.

Theorem 1: The nonlinear impulsive delayed system �1�
has a stationary oscillation if the system �1� is S-stable.

Proof: For each solution x�t ;0 ,�� through �0,�� and
each t0, we can define a function xt�0,�� in this fashion,

xt�0,�� = x�t + 	;0,�� for 	 � �− �,0� .

On this basis, we can define a mapping F : PC→PC by
F�=x��0,��

Let x�t ;0 ,��, x�t ;0 ,�� be an arbitrary pair of solutions
of Eq. �1�. Since impulsive system �1� is S-stable, it is easy
to know that F is continuous in Rn. From the definition, there
exists � :��1−
, T�R+ for any tT:


�t� � 
 + � � � � 1.

Let m�N+, such that m��T+�. Then one has

�x�m�+;0,�� − x�m�+;0,��� � ��� − ��

which implies �Fm�−Fm� � �� ��−��. Following the fixed-
point theorem, Fm possesses a unique fixed point �*� PC.
Note that Fm�F�*�=F�Fm�*�=F�*, which indicates that
F�*� PC is also a fixed point of Fm. It follows from the
uniqueness of the fixed point of Fm that F�*=�*, i.e.,
x��0,�*�=�*. Then

xt+��0,�*� = xt�0,x��0,�*�� = xt�0,�*� for all t  0,

which implies

x�t + �;0,�*� = xt+��0,�*� = xt�0,�*�

= x�t;0,�*� for all t  0.

Hence, x�t ;0 ,�*� is �-periodic.
For any t�m�, note t=km�+r, k�N+, r� �0,m��. For

any initial function ���*, we have
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�x�km� + r;0,�� − x�km� + r;0,�*�� = �x�m� + r;0,x��k − 1�m�+;0,��� − x�m� + r;0,x��k − 1�m�+;0,�*���

� ��x��k − 1�m�+;0,�� − x��k − 1�m�+;0,�*��

= ��x�m�+;0,x��k − 2�m�+;0,��� − x�m�+;0,x��k − 2�m�+;0,�*���

� �2�x��k − 2�m�+;0,�� − x��k − 2�m�+;0,�*�� � ¯

� �k�x�0+;0,�� − x�0+;0,�*�� = �k�� − �*� .

Since ��1, we have

�x�km� + r;0,�� − x�km� + r;0,�*�� → 0�k → � � ,

which implies that the periodic solution x�t ;0 ,�*� is stable.
Hence, the nonlinear impulsive delayed system �1� has a sta-
tionary oscillation. Thus the proof is completed.

III. APPLICATION

In this section, we study the stationary oscillations of a
Hopfield neural network with both time delays and impulses
through proof that the system is S-stable by using the
Lyapunov method. This can be seen as an application of the
criterion of stationary oscillations for an impulsive delayed
system developed in the preceding section. In Refs. 10–16,
the authors investigated periodic solutions of some delayed
neural networks with linear impulses, where some criteria for
stationary oscillation of these neural networks were pro-
posed. It is worth pointing out that the method proposed here
is different from those of Refs. 10–16, and can be easily
verified.

The Hopfield neural networks subjected to certain im-
pulsive state displacements at fixed moments of time are as
follows:

dxi�t�
dt

= − ai�t�xi�t� + 	
j=1

m

bij�t�f j�xj�t��

+ 	
j=1

m

cij�t�f j�xj�t − �ij�t��� + Ii�t�, t � 0,t � tk,

�xi�tk� = xi�tk
+� − xi�tk

−� = − �ikxi�tk� , �2�

xi�t� = �i�t�, t � �− �,0�, i = 1,2, . . . ,m, k = 1,2, . . . ,

where �i�t� is a continuous function, m denotes the number
of units in a neural network, xi�t� corresponds to the state of
the ith unit at time t, f j�xj�t�� denotes the output of the jth
unit at time t, bij�t� denotes the strength of the jth unit on the
ith unit at time t, cij�t� denotes the strength of the jth unit on
the ith unit at time t−�ij�t�, Ii�t� is the external bias on the ith
unit at time t, �ij�t� denotes the transmission delay along the
axon of the jth unit, the delays 0��ij�t��� are bounded
functions. �xi�tk�=xi�tk

+�−xi�tk
−�=xi�tk

+�−xi�tk� are the im-
pulses at moments tk and t1� t2�¯ is a strictly increasing
sequence such that limk→�tk= +�.

Throughout this section, we assume that:
�H1� ai�t��0, bij�t�, cij�t�, �ij�t�0, and Ii�t�, i , j

=1,2 , . . . ,m are all continuous �-periodic functions.

�H2� Functions f j�u��j=1,2 , . . . ,m� satisfy the Lipschitz
condition, i.e., there are constants Lj �0 such that

�f j�u� − f j�v�� � Lj�u − v�, for all u,v � R = �− � , + � � .

�H3� There exists a positive integer q such that

tk+q = tk + �, �i�k+q� = �ik � 0, k = 1,2, . . . ,

i = 1,2, . . . ,m .

Now, we introduce a result as follows:
Lemma:21 Assume that P�t� is a non-negative continu-

ous function on �t0−� ,��, and satisfies the following
inequality:

Ṗ�t� � − a�t�P�t� + b�t�Pt.

Then there exists a positive ��0, such that
P�t�� Pt0

exp�−��t− t0�� for all t� �t0−� ,�� if a�t� or b�t�
is bounded, �=inft��t0,���a�t�−b�t���0, where Pt

=sup−��	�0P�t+	�.
For the impulsive Hopfield neural networks with time

delay �Eq. �2��, we have the following result.
Theorem 2: Under �H1�− �H3�, the Hopfield neural net-

work with time delay and impulses �Eq. �2�� admits a sta-
tionary oscillation if 0��ik�2, i=1,2 , . . . ,m, k=1,2 , . . .,
and

inf
t�0

min

i
�ai�t� − Li	

j=1

m

�bji�t��� − max
i

�Li	
j=1

m

�cji�t���� � 0.

Proof: Suppose that x�t�= �x1�t� ,x2�t� , . . . ,xm�t��T and
y�t�= �y1�t� ,y2�t� , . . . ,ym�t��T are two arbitrary solutions of
system �2� and let z�t�=x�t�−y�t�. Then it follows from Eq.
�2� that

dzi�t�
dt

= − ai�t�zi�t� + 	
j=1

m

bij�t�gj�xj�t�,yj�t��

+ 	
j=1

m

cij�t�gj�xj�t − �ij�t��,yj�t − �ij�t���,

t � 0, t � tk,

�zi�t� = zi�tk
+� − zi�tk

−� = − �ikzi�tk� , �3�

zi�t� = �i�t� − �i�t�, t � �− �,0�, i = 1,2, . . . ,m,

k = 1,2, . . . ,

where gj�xj�t� ,yj�t��= f j�xj�t��− f j�yj�t��, j=1,2 , . . . ,m.
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We define a Lyapunov function V�t� by V�t�=	i=1
m �zi�t�� for t0. In view of Eq. �3� and condition �H2�, when t� tk, we

obtain

D+V

dt
� 	

i=1

m

�− ai�t��zi�t�� + 	
j=1

m

��bij�t��Lj�zj�t�� + �cij�t��Lj�zj�t − �ij�t�����

= − 	
i=1

m

ai�t��zi�t�� + 	
i=1

m

	
j=1

m

��bij�t��Lj�zj�t�� + �cij�t��Lj�zj�t − �ij�t����

= − 	
i=1

m

ai�t��zi�t�� + 	
i=1

m

	
j=1

m

��bji�t��Li�zi�t�� + �cji�t��Li�zi�t − � ji�t����

= − 	
i=1

m

�ai�t� − Li	
j=1

m

�bji�t����zi�t�� + 	
i=1

m

	
j=1

m

�cji�t��Li�zi�t − � ji�t���

� − min
i

ai�t� − Li	

j=1

m

�bji�t���V�t� + max
i

Li	

j=1

m

�cji�t���Vt. �4�

Also, in view of condition of the theorem, one has

V�tk
+� = 	

i=1

m

�zi�tk
+�� = 	

i=1

m

�1 − �ik��zi�tk�� � V�tk� . �5�

From the Lemma, conditions of Theorem 2, and inequalities
�4� and �5�, we know that there exists a positive ��0, such
that

	
i=1

m

�zi�t�� � 	
i=1

m

�zi�0��exp�− �t�, t � 0. �6�

Hence, the impulsive system �2� is S-stable. From Theorem
1, the Hopfield neural networks with both time delays and
impulses �Eq. �2�� has a stationary oscillation. The proof is
completed.

Remark: Reference 15 discussed stationary oscillation
of the impulsive delayed Hopfield neural networks. But, in
Ref. 15, the inequality �22� is incorrect, thus it leads to the
mistake in the proof of Theorem 2, which results in the in-
accuracy of the main result of the Ref. 15. In addition, the
inequality �17� is also incorrect in Ref. 16, hence the main
result of Ref. 16 is false. By using the same method as illus-
trated in this section, ones can study the stationary oscilla-
tions for impulsive delayed neural networks of Refs. 15 and
16, respectively.

IV. AN ILLUSTRATIVE EXAMPLE

Consider the following time-varying impulsive delayed
cellular neural networks:

dx1�t�
dt

= − �6 + � sin t�x1�t� + sin 2tf1�x1�t�� + cos 3tf2�x2�t�� + sin 3tf1�x1�t −
1 + cos t

2
 + sin tf2�x2�t −

1 + sin t

2


+ 4 sin t, t � 2k� ,

dx2�t�
dt

= − �7 + � cos t�x2�t� +
cos t

3
f1�x1�t�� +

cos 2t

2
f2�x2�t�� + cos tf1�x1�t −

1 + cos t

2
 + cos 2tf2�x2�t −

1 + sin t

2


+ 2 cos t, t � 2k� ,

�7�
�x1�2k�� = x1�2k�+� − x1�2k�−� = − 0.2x1�2k�� ,

�x2�2k�� = x2�2k�+� − x2�2k�−� = − 0.3x2�2k��, k = 1,2, . . . ,
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where �� � �2, the activation function is a piecewise-linear
function

f1�x� = f2�x� = f�x� = 1
2 ��x + 1� − �x − 1�� .

According to Theorem 2, the cellular neural networks
with both time delays and impulses �Eq. �7�� has a stationary
oscillation with 2� period. When ��0, the result of the
paper11 cannot be applied for stationary oscillation.

V. CONCLUSION

We have investigated the stationary oscillation for a non-
linear impulsive delayed system, and the result has been ap-
plied to chaotic neural networks in this paper. First, a new
concept of S-stability for a nonlinear impulsive delayed sys-
tem was introduced; the relationship of S-stability and sta-
tionary oscillation for the nonlinear impulsive delayed sys-
tem was explored. Then, an easily verifiable sufficient
condition was obtained for stationary oscillation of the
Hopfield neural networks with both time delays and impulses
based on the new criterion. Finally, we indicated that the
main results of the paper15,16 are incorrect. By using the
S-stability and Lyapunov method, one can study the station-
ary oscillations for impulsive delayed neural networks of
Refs. 15 and 16, respectively.

The introduced notion S-stability bridges the existence
of stationary oscillations for a nonlinear impulsive delayed
system with the well-understood Lyapunov methods. Hence,
via exploring S-stability could provide us with a new way to
understand the stationary oscillations in general nonlinear
impulsive delayed systems. Of course, this needs further ex-
ploration and is currently under study, and the main issue is
to obtain easily verifiable criteria of S-stability for general
impulsive delayed systems. With these new criteria, it will
become directly applicable to studying the stationary oscilla-
tions in other kinds of neural networks with both time delays
and impulses, which still remains challenging using current
methods.
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