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Chapter 1

Hybrid Dynamical Systems: Stability

and Stabilization

1.1 Introduction

Hybrid systems are heterogeneous dynamical systems, the behaviors of which are determined

by interacting continuous variables and discrete switching logics [1, 2]. By heterogeneity,

we mean hybrid systems containing two different kinds of dynamics. One is time-driven

continuous variable dynamics, usually described by differential or difference equations; the

other is event-driven discrete logic dynamics, whose evolutions depend on “if-then-else” type

of rules and may be described by automata or Petri nets. In addition, these two kinds

of dynamics interact with each other and generate complex dynamical behaviors, such as

switching once certain continuous variable passes through a threshold, or state jumping

when certain discrete event occurs. As a simple example, the temperature regulation in an

air-conditioned room can be considered as a hybrid system; the room temperature evolution

forms the continuous variable dynamics following thermophysical laws, whereas the on-off

evolution of the air conditioner can be modeled as a discrete event process.

Hybrid systems have been identified in a wide variety of applications; in the control of
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2CHAPTER 1. HYBRID DYNAMICAL SYSTEMS: STABILITY AND STABILIZATION

mechanical systems, in process control, in automotive industry, power systems, aircraft and

traffic control, among many other fields. Specifically, hybrid systems have a central role

in embedded control systems, where program codes interact with the physical world. In

particular, the logic rules programmed in the embedded devices, which can be modeled as

discrete event systems, are affecting and being influenced by the continuous variable physical

processes, such as spatial location, temperature, and pressure evolutions. Studies in hybrid

systems could provide a unified modeling framework for embedded systems, and system-

atic methods for performance analysis, verification, and embedded micro-controller design.

Therefore, hybrid systems have attracted the attention of researchers not only from control

engineering, but also from computer science and mathematics. Topics, such as modeling,

verification, stability, controllability, optimal control and supervisory control, have been ex-

tensively studied in the hybrid system literature, and the interested readers may refer to

[1, 2, 5, 4, 13] and the references therein. In this chapter, we will focus on the stability issues

of hybrid systems.

It is known that the stability of hybrid systems includes several interesting phenomena

due to the interaction of continuous variable dynamics and discrete switching logics [6, 3, 8].

For example, even when all the continuous variable subsystems are exponentially stable, the

hybrid system may have divergent trajectories under certain discrete switching logic. On the

other hand, one may carefully switch between unstable continuous variable subsystems to

make the overall hybrid system exponentially stable. As these examples suggest, the stability

of hybrid systems depends not only on the continuous variable dynamics of each subsystem

but also on the properties of discrete switching logics. Therefore, the stability study of hybrid

systems can be roughly divided into two kinds of problems. One is the stability analysis of

hybrid systems under given discrete switching logics; the other is the synthesis of stabilizing

switching logics for a given collection of continuous variable dynamical systems.

We mainly focus on a subclass of hybrid systems that consist of a finite number of

continuous-variable subsystems and a discrete logical rule, which orchestrates switching

between these subsystems. The systems are usually called switched systems in the liter-

ature [6, 8]. In this chapter, we will use the terms hybrid systems and switched systems

interchangeably. One convenient way to classify hybrid/switched systems is based on the
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dynamics of their subsystems, for example continuous-time or discrete-time, linear or non-

linear and so on. In this chapter, we will focus our attention to hybrid/switched systems

where all subsystems are linear time-invariant systems. The generalization of these results

to nonlinear switched systems or more general cases are well-documented in the literature,

see e.g., survey papers [6, 3, 8] for further references.

The rest of this chapter is organized as follows. First, we focus on the stability analysis

of hybrid systems under given discrete switching logics. In particular, some results on the

stability analysis for hybrid systems under arbitrary switching are introduced in Section 1.2,

while the stability under slow switching (like dwell time and average dwell time) is studied in

Section 1.3. The general case of hybrid system stability under restricted switching is investi-

gated in Section 1.4 through multiple Lyapunov functions. Then, we turn to the synthesis of

stabilizing switching logic for a given collection of continuous variable dynamical systems in

Section 1.5, where several stabilization conditions and design methods are described. Finally,

the chapter concludes with remarks and a list of references.

1.2 Arbitrary Switching

In this section, we first consider the stability analysis problem where there are no restrictions

on the discrete event dynamics of the hybrid system. This may be due to our lack of

knowledge of the discrete event logic, or of the partitions of the state space, or of the

constraints in the hybrid system of concern. Under these circumstances, one usually tends

to be more conservative and assumes that all possible discrete switchings are possible; this

is called arbitrary switching in the literature. On the other hand, when the stability under

arbitrary switching is guaranteed, this could provide us with flexibility in the discrete logic

design, where one may focus on improving the performances, since the closed-loop system

stability is not a problem any longer.
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1.2.1 Common Lyapunov Function

We know that a hybrid system may become unstable even when all subsystems are expo-

nentially stable. Therefore, to identify conditions under which a hybrid system is stable

under arbitrary switchings is nontrivial and interesting. For this, it is necessary to require

that all the subsystems are asymptotically stable, since if one subsystem were unstable, one

switching strategy would have been to always select that subsystem all time, which is a valid

‘switching logic’ as well, and that would make the system unstable. In general, the above

subsystems’ stability assumption is not sufficient to ensure stability for the hybrid systems

under arbitrary switchings. However, if there exists a common Lyapunov function for all the

subsystems, i.e., a continuously differentiable, radially unbounded, positive definite function

V : R × Rn → R, for which the derivative V̇ (x, t) is negative definite along all subsystems’

trajectories, then the stability of the hybrid systems is guaranteed under arbitrary switch-

ings. This provides us with a possible way to solve this problem, and a lot of research efforts

have been focused on finding common quadratic Lyapunov functions.

Common Quadratic Lyapunov Functions

First, we consider a collection of continuous-time linear time-invariant (LTI) systems

ẋ(t) = Aix(t), t ∈ R+, i ∈ I, (1.1)

where I stands for a finite index set. For all i ∈ I, the state matrices Ai ∈ Rn×n. Note that

the origin xe = 0 is a common equilibrium for the systems described in (1.1). The hybrid

system of interest is built by allowing arbitrary switching among these LTI systems (1.1).

A Common Quadratic Lyapunov Functions (CQLF) for (1.1) is a special class of Lyapunov

functions of the form

V (x) = xT Px, (1.2)

where P = P T (symmetric) and P > 0 (positive definite). In addition, its time derivative
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along any trajectory of systems (1.1) is negative definite, or alternatively

AT
i P + PAi = −Qi, i ∈ I, (1.3)

where Qi are symmetric and positive definite for all i ∈ I. The existence of a common

quadratic Lyapunov function (CQLF) for all its subsystems assures the quadratic stability

of the hybrid system. Quadratic stability is a special class of exponential stability, which

implies asymptotic stability, and has attracted a lot of research efforts due to its importance

in practice.

A CQLF for (1.1) can be obtained by solving a set of linear matrix inequalities (LMIs).

Namely, there exists a positive definite symmetric matrix P , P ∈ Rn×n, such that

PAi + AT
i P < 0, ∀i ∈ I, (1.4)

hold simultaneously. However, the standard interior point methods for LMIs may become

ineffective as the number of subsystems increases. This motivates researchers to identify

easily verifiable conditions that guarantee the existence of a CQLF for (1.1). Here, we take a

look at a well-studied special case, interested readers may refer to [6, 8] for further references.

Commutative Systems

Let us first look at a special case, where the subsystems’ state matrices are pairwise com-

mutative, i.e., AiAj = AjAi for all i, j ∈ I. Because of the commutativity, it is easy to show

that

Ak1
i Ak2

j = Ak2
j Ak1

i ,

for any nonnegative integer k1 and k2, and

eAit1eAjt2 = eAjt2eAit1 ,

for any nonnegative real number t1 and t2. By direct computation, it is straightforward to

verify that in this case the arbitrary switching system is stable if and only if all its subsystems
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are stable.

Theorem 1 For a collection of LTI systems (1.1) with the index set I = {1, · · · , N}, if

all subsystem matrices are stable (i.e., all eigenvalues of Ai have negative real part) and

commute pairwise (AiAj = AjAi,∀i, j ∈ I), then the hybrid system with subsystems given

by (1.1) is asymptotically stable under arbitrary switching.

A common quadratic Lyapunov function exists in this case, and can be determined by

solving a collection of chained Lyapunov equations as shown in the following:

Theorem 2 Assume that the index set I = {1, · · · , N}. Let P1, · · · , PN be the unique

symmetric positive definite matrices that satisfy the Lyapunov equations

AT
1 P1 + P1A1 = −I, (1.5)

AT
i Pi + PiAi = −Pi−1, i = 2, · · · , N (1.6)

then the function V (x) = xT PNx is a common Quadratic Lyapunov function for systems

ẋ(t) = Aix(t), i = 1, · · · , N .

In addition, the matrix PN can be expressed in integral form as

PN =

∫ ∞

0

eAT
N tN · · · (

∫ ∞

0

eAT
1 t1eA1t1dt1) · · · eAN tN dtN .

It is not difficult to extend this result to the discrete-time case.

Theorem 3 Let P1, · · · , PN be the unique symmetric positive definite matrices that satisfy

the Lapunov equations

AT
1 P1A1 + P1 = −I, (1.7)

AT
i PiAi + Pi = −Pi−1, i = 2, · · · , N (1.8)

then the function V (x) = xT PNx is a common Lyapunov function for the systems x[k +1] =
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Aix[k], i = 1, · · · , N .

In the literature, there exist several interesting necessary and also sufficient algebraic

conditions for the existence of a CQLF for more general cases but usually for low dimensional

systems, and interested readers may consult [6, 8] for further references. Note that Lie

algebraic conditions were proposed in the literature, see e.g. [6], for arbitrary switching

systems, which are based on the solvability of the Lie algebra generated by the subsystems’

state matrices. It was shown that if the Lie algebra generated by the set of state matrices

Ai is solvable, then there exists a CQLF, and the hybrid system is stable under arbitrary

switching.

1.2.2 Switched Quadratic Lyapunov Functions

It should be pointed out that the existence of a common quadratic Lyapunov function is

only sufficient for the stability of arbitrary switching systems. Therefore, in general, the

existence of a common quadratic Lyapunov function is only sufficient for the asymptotic

or exponential stability of hybrid systems under arbitrary switchings, and could be rather

conservative. Hence, some attention has been paid to a less conservative class of Lyapunov

functions, called switched quadratic Lyapunov functions.

In this subsection, we investigate the stability of the following discrete-time arbitrary

switching LTI systems

x[k + 1] = Aix[k], t ∈ Z+, (1.9)

where x ∈ Rn, and i ∈ I. Basically, since every subsystem is stable, there exists a positive

definite symmetric matrix Pi that solves the Lyapunov equation for each i-th subsystem

AT
i PiAi − Pi < 0,

for all i ∈ I. Next, these matrices Pi are patched together based on the switching signals to
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construct a global Lyapunov function as

V (k, x[k]) = xT [k]Pσ(k)x[k], (1.10)

where σ(k) : k → I stands for the switching signal at step k. Since all Pi are positive

definite, it is clear that the function V (k, x[k]) = xT [k]Pσ(k)x[k] is also positive definite. If

it further holds that ∆V (k, x[k]) = V (k + 1, x[k + 1])− V (k, x[k]) is negative definite along

the solution of (1.9), then the origin of the system (1.9) is globally asymptotically stable. In

particular, a sufficient condition for the stability of the arbitrary switching system (1.9) is

given as follows.

Theorem 4 If there exist positive definite symmetric matrices Pi ∈ Rn×n (Pi = P T
i ) for

i ∈ I, satisfying


 Pi AT

i Pj

PjAi Pj


 > 0 (1.11)

for all i, j ∈ I, then the linear system (1.9) with arbitrary switching is asymptotically stable.

¤

The stability checking for arbitrary switching linear systems can be performed by solving

linear matrix inequalities (LMIs).

It is clear that when Pi = Pj for all i, j ∈ I, the switched quadratic Lyapunov function

becomes the CQLF. Therefore, the stability criteria based on the switched quadratic Lya-

punov function generalizes the CQLF approach and usually gives us less conservative results.

However, it is worth pointing out that the switched quadratic Lyapunov function method is

still a sufficient only condition.
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1.2.3 Necessary and Sufficient Conditions

In the sequel, we will provide some necessary and sufficient conditions for the asymptotic sta-

bility of arbitrary switching linear systems. It is shown that the asymptotic stability problem

for hybrid linear systems with arbitrary switching is equivalent to the robust asymptotic sta-

bility problem for polytopic uncertain linear time-variant systems, for which several strong

stability conditions exist.

Theorem 5 [8, 10] The following statements are equivalent:

1. The arbitrary switching system

ẋ(t) = Aσ(t)x(t),

where Aσ(t) ∈ {A1, A2, · · · , AN}, is asymptotically stable;

2. the linear time-variant system

ẋ(t) = A(t)x(t),

where A(t) ∈ A=̂Conv{ A1, A2, · · · , AN}, where Conv{·} stands for the convex com-

bination, is asymptotically stable;

3. there exist a full column rank matrix L ∈ Rm×n, m ≥ n, and a family of matrices

{Āi ∈ Rm×n : i ∈ I} with strictly negative row dominating diagonal, i.e., for each Āi,

i ∈ I its elements satisfying

ākk +
∑

k 6=l

|ākl| < 0, k = 1, · · · ,m,

such that the matrix relations

LAi = ĀiL

are satisfied. ¤
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It is interesting to notice that the nice property of Āi (i ∈ I) implies the existence

of a common quadratic Lyapunov function for the higher dimensional arbitrary switching

system. Unfortunately, applying the above Theorem is still difficult because, in general,

the numerical search for the matrix L is not simple. However, this equivalence bridges two

research fields, namely the fields of hybrid system and robust stability. Therefore, existing

results in the robust stability area, which has been extensively studied for over two decades,

can be directly introduced to study the arbitrarily switching systems and vice versa. For

example, it is known in the robust stability literature that the global attractiveness, (global)

asymptotic stability, and (global) exponential stability are all equivalent for the polytopic

uncertain linear time-variant systems [10]. Hence, these stability concepts are also equivalent

for arbitrary switching systems. Similar results can be developed for the discrete-time case

as it is shown below.

Theorem 6 [8, 10] The following statements are equivalent:

1. The arbitrary switching system x[k + 1] = Aσ(k)x[k] where Aσ(k) ∈ {A1, A2, · · · , AN},
is asymptotically stable;

2. the linear time-variant system x[k + 1] = A(k)x[k], where A(k) ∈ A=̂Conv{ A1, A2,

· · · , AN}, is robustly asymptotically stable;

3. there exists an integer m ≥ n and L ∈ Rn×m, rank(L) = n such that for all Ai, i ∈ I,

there exists Āi ∈ Rm×m with the following properties:

(a) AT
i L = LĀT

i ,

(b) each column of Āi has no more than n nonzero elements and

‖Āi‖∞ = max
1≤k≤m

m∑

l=1

|ākl| < 1.

¤

Based on the equivalence between the asymptotic stability of arbitrary switching linear

systems and the robust stability of polytopic uncertain linear time-variant systems, some
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well established converse Lyapunov theorems can be introduced for arbitrary switching linear

systems. For example, the following results were taken from [10].

Theorem 7 If the arbitrary switching system is exponentially stable, then it has a strictly

convex, homogenous (of second order) common Lyapunov function of a quasi-quadratic form

V (x) = xT L(x)x, where L(x) = LT (x) = L(τx) for all nonzero x ∈ Rn and τ ∈ R. ¤

Furthermore, we may restrict our search to include only polyhedral Lyapunov functions

(also known as piecewise linear Lyapunov functions) as the following result pointed out.

Theorem 8 If an arbitrary switching linear system is asymptotically stable, then there

exists a polyhedral Lyapunov function, which is monotonically decreasing along the switched

system’s trajectories. ¤

This converse Lyapunov theorem holds for both discrete-time and continuous-time cases,

which suggests that the existence of a common Lyapunov function (not necessarily quadratic)

is not only sufficient but also necessary for the stability of a hybrid system under arbitrary

switching.

Before we move on to another topic, let’s take a look at the following example, which is

taken from the robust stability literature.

Example 1.1 Consider an arbitrary switching system, ẋ = Aix, i ∈ {1, 2}, where

A1 =


 0 1

−0.06 −1


 ; A2 =


 0 1

−1.94 −1


 .

It is known that no CQLF exits. However, the arbitrary switching system is asymptotically

stable, which is assured by the existence of a piecewise quadratic Lyapunov function; a

particular piecewise linear Lyapunov function is also suggested in the robust literature.
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1.3 Slow Switching

Hybrid systems may fail to preserve stability under arbitrary switching. On the other hand,

one may have some knowledge about the occurrence of possible discrete event dynamics in

the hybrid systems and this knowledge can be translated into restrictions on the switching

signals. For example, there must exists certain bound on the time interval between two

successive switchings, which may be due to the fact that the state trajectories have to spend

some finite period of time in traveling from the initial set to certain boundary sets before

switching, if these two sets are separated. With such kind of prior knowledge about the

switching signals, we may derive stronger results on the stability for a given hybrid system

instead of just using the worst case arguments of the previous section.

By studying the cases where divergent trajectories are generated through switching be-

tween two stable systems, one may notice that the unboundedness is caused by the failure

to absorb the energy increase caused by frequent switchings. In addition, when there is an

unstable subsystem present (e.g., controller failure or sensor fault), if one either stays too

long on it or switches too frequently to it, this may cause instability . Therefore, a natural

question is what if we restrict the switching signals to some constrained subclasses. Intu-

itively, if one stays at stable subsystems long enough and switches less frequently, i.e., slow

switching, one may trade off the energy increase caused by switching or unstable modes,

and it should perhaps become possible to attain stability. These ideas are proved to be

reasonable and are captured by concepts like dwell time and average dwell time [4] between

switchings that are introduced below.

The simplest way to characterize the concept of slow switching is perhaps to request a

lower bound on two consecutive switching times.

Definition 1 A positive scalar τd is called the dwell time if the time interval between any

two consecutive switchings is no smaller than τd.

Assume that all subsystems of the hybrid system are exponentially stable. Then, it can

be shown that there exists a scalar τd > 0 such that the hybrid system remains exponentially
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stable if the dwell time is larger than τd. In addition, one may give an estimate on the bound

of the dwell time and decay rate.

It fact, it really does not matter if one occasionally have a smaller dwell time between

switching, provided this does not occur too frequently. This concept is captured by the

concept of “average dwell-time.”

Definition 2 A positive constant τa is called the average dwell time if Nσ(t) ≤ N0+ t
τa

holds

for all t > 0 and some scalar N0 ≥ 0, where Nσ(t) denotes the number of discontinuities of

a given switching signal σ over [0, t).

Here the constant τa is called the average dwell time and N0 the chatter bound. The

reason for calling a class of switching signals that satisfy

Nσ(t) ≤ N0 +
t

τa

having an average dwell no less than τa is because

Nσ(t) ≤ N0 +
t

τa

⇔ t

Nσ(t)−N0

≥ τa.

This means that on average the ‘dwell time’ between any two consecutive switchings is no

smaller than τa. The idea is that there may exist consecutive switching separated by less

than τa, but the average time interval between consecutive switchings is not less than τa.

Theorem 9 Assume that all subsystems, ẋ = Aix for i ∈ I, in the hybrid system are

exponentially stable. Then, there exists a scalar τa > 0 such that the hybrid system is

exponentially stable if the average dwell time is larger than τa.

Moreover, we can also obtain a bound on the decay rate.

Theorem 10 Given a positive scalar λ0 such that Ai + λ0I is stable for all i ∈ I. Then,

for any given λ ∈ (0, λ0), there exists a finite constant τa such that the hybrid system is
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exponentially stable with decay rate λ provided that the average dwell time is no less than

τa.

The stability results for slow switching can be extended to discrete-time case, where the

dwell time τd or average dwell time τa are counted as the number of sampling periods. In

particular,

Definition 3 A positive constant τa is called the average dwell time if Nσ(k) ≤ N0 + k
τa

holds for all k > 0 and some scalar N0 ≥ 0, where Nσ(k) denotes the number of switchings

of a given switching signal σ over [0, k).

Theorem 11 Given a positive scalar λ0 such that Ai/λ0 is stable for all i ∈ I. Then, for

any given λ ∈ (λ0, 1), there exists a finite constant τa such that the hybrid system, consisting

of x[k +1] = Aix[k] as its subsystems, is exponentially stable with decay rate λ provided the

average dwell time is no less than τa.

Interested readers may refer to the survey papers [6, 4, 8] for further references on the

stability of hybrid systems under slow switchings.

1.4 Multiple Lyapunov Functions

We will continue our study of the stability of hybrid systems under restricted switchings in

this section. It should be pointed out that not all restrictions on switching signals can be

captured by the dwell time or average dwell time. For example, it is difficult to transform

the invariant set constraints, guard set constraints and so on, which determine the switching

signals, into only dwell-time or average dwell time restrictions on switching signals. The main

difficulty comes from the fact that most constraints in hybrid systems are state dependent

and in the form of partitions of the state space, and so it is hard to transform them into pure

time dependent constraints like dwell time etc. This calls for a more general tool to study

hybrid system stability, and we will introduce a powerful tool,multiple Lyapunov functions.
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1.4.1 Multiple Lyapunov Function Theorem

The stability analysis under constrained switching has been usually pursued in the frame-

work of multiple Lyapunov functions (MLF). The basic idea is to use multiple Lyapunov

or Lyapunov-like functions, each of which may correspond to a single subsystem or cer-

tain region in the state space, concatenated together to produce a non-traditional Lyapunov

function. The non-traditionality is in the sense that the MLF may not be monotonically

decreasing along the state trajectories, may have discontinuities and be piecewise differen-

tiable. The reason for considering non-traditional Lyapunov functions is that traditional

Lyapunov function may not exist for hybrid systems with restricted switching signals. For

such cases, one still may construct a collection of Lyapunov-like functions, which only re-

quires non-positive Lie-derivative for certain subsystem in a certain region of the state space

instead of globally negativity conditions.

Lyapunov-like functions are defined as a family of real-valued functions {Vi, i = 1, · · · , N}
with certain properties, each associated with the vector field ẋ = fi(x) that represents the

continuous dynamics for the hybrid system under the i-th discrete mode.

Definition 4 (Lyapunov-like function) By saying that a subsystem has an associated

Lyapunov-like function Vi in region Ωi ⊆ Rn, we mean that

1. There exist constant scalars βi ≥ αi > 0 such that

αi‖x‖2 ≤ Vi(x) ≤ βi‖x‖2

holds for any x ∈ Ωi;

2. For all x ∈ Ωi and x 6= 0, V̇i(x) < 0.

Here V̇i(x) = ∂Vi(x)
∂x

fi(x). The first condition implies positiveness and radius unbound-

edness for Vi(x) when x ∈ Ωi, while the second condition guarantees the decreasing of the

abstracted energy, value of function Vi(x), along trajectories of subsystem i inside Ωi.
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Suppose that these regions Ωi cover the whole state space, and so a cluster of Lyapunov-

like functions is obtained. By concatenating these Lyapunov-like functions together, we

obtain a non-traditional Lyapunov function, called multiple Lyapunov function (MLF), which

can be used to study the global stability of hybrid systems. MLF are proved to be a powerful

tool for studying the stability of switched systems and hybrid systems; see for example

[9, 3, 6, 8]. There are several versions of MLF results in the literature. A very intuitive MLF

result [3] is illustrate in Figure 1.1, where the Lyapunov-like function is decreasing when

the corresponding mode is active and does not increase its value at each switching instant.

Formally, this result can be stated by the following theorem [3].

Theorem 12 Suppose that each subsystem has an associated Lyapunov-like function Vi in

its active region Ωi, each with equilibrium point x = 0. Also, suppose that
⋃

i Ωi = Rn. Let

σ(t) be a class of piecewise-constant switching sequences such that σ(t) can take value i only

if x(t) ∈ Ωi, and in addition

Vj(x(ti,j)) ≤ Vi(x(ti,j))

where ti,j denotes the time that the switched system switches from subsystem i to subsystems

j, i.e., x(t−i,j) ∈ Ωi while x(ti,j) ∈ Ωj. Then, the switched linear system (1.1) is exponentially

stable under the switching signals σ(t). ¤

The above MLF theorem requires that at each switching instant the Lyapunov-like func-

tion does not increase its value, which is quite conservative. Actually, one may obtain

less conservative results. For example, the switching signals may be restricted in such a

way that, at every time when we exit (switch from) a certain subsystem, its corresponding

Lyapunov-like function value is smaller than its value at the previous exiting time. Then the

switched system is asymptotically stable. In other words, for each subsystem the correspond-

ing Lyapunov-like function values at every exiting instant form a monotonically decreasing

sequence. Alternatively, the decreasing tendency is captured by the Lyapunov-like function’s

value at the entering instant instead. This case is illustrate in Figure 1.2. This result can

be presented as follows.

Theorem 13 [3] Assume that there exists a family of Lyapunov functions {Vi : i ∈ I}
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Figure 1.1: The hybrid system is asymptotically stable if the Lyapunov-like functions’ values
at the switching instants form a decreasing sequence.

for each stable subsystem. If for any two switching instants ti and tj such that i < j and

σ(ti) = σ(tj) we have

Vσ(tj)(x(tj+1))− Vσ(ti)(x(ti+1)) ≤ −ρ‖x(ti+1)‖2,

for some constant ρ > 0, then the switched system is asymptotically stable.

Furthermore, as shown in [9], the Lyapunov-like function may increase its value during

a time interval, only if the increment is bounded by certain kind of continuous functions as

illustrated in Figure 1.3. Interested readers may refer to the survey papers [3, 6, 9] and their

references. Note that all the arguments for continuous-time hybrid/switched systems can be

extended to the discrete-time case without essential differences.
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Figure 1.2: For every subsystem, its Lyapunov-like function’s value Vi at the start point
of each interval exceeds the value at the start point of the next interval on which the i-th
subsystem is activated, then the hybrid system is asymptotically stable.

1.4.2 Piecewise Quadratic Lyapunov Functions

The critical challenge of applying the MLF theorems to practical switched/hybrid systems

is how to construct a proper family of Lyapunov-like functions. Usually this is a hard

problem. However, if one focuses on the linear case, piecewise quadratic Lyapunov-like

functions could be attractive candidates, since the stability conditions in the MLF theorems

can be formulated as LMIs [3, 5], for which efficient software solution packages exist.

Considering the hybrid system with LTI subsystem, ẋ(t) = Aix(t), since we do not assume

that the subsystem is stable, there may not exist a quadratic Lyapunov function in a classical

sense. However, it is still possible to restrict our search to certain regions of the state space,

say Ωi ⊂ Rn, and the energy of the i-th subsystem could be decreasing along the trajectories

inside this region (there is no decreasing requirements outside Ωi). Suppose that the union

of all these regions Ωi covers the whole state space; then we obtain a cluster of Lyapunov-
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Figure 1.3: The hybrid system can remain stable even when the Lyapunov-like function
increases its value during certain period.

like functions. Broadly speaking, the problem entails searching for Lyapunov-like functions

whose associated Ω-region cover the state space.

Assume that the state space Rn has a partition given by {Ω1, · · · , ΩN}, and these regions

Ωi are defined a priori as a restriction of the possible switching signals (state-dependent).

In this subsection, we present LMI conditions for the existence of quadratic Lyapunov-like

functions of the form of Vi(x) = xT Pix, assigned to each region Ωi. A Lyapunov-like function

Vi(x) = xT Pix needs to satisfy the following two conditions:

Condition 1: There exist constant scalars βi ≥ αi > 0 such that

αi‖x‖2 ≤ Vi(x) ≤ βi‖x‖2

hold for all x ∈ Ωi.
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Consider a quadratic Lyapunov-like function candidate, Vi(x) = xT Pix, and require that

αix
T Ix ≤ xT Pix ≤ βix

T Ix,

holds for any x ∈ Ωi. That is 



xT (αiI − Pi)x ≤ 0

xT (Pi − βiI)x ≤ 0

holds for all x ∈ Ωi.

Condition 2: For all x ∈ Ωi and x 6= 0, V̇i(x) < 0.

This negativeness of the Lyapunov-like function’s derivative along the trajectories of a

subsystem can be represented as: ∃Pi, (Pi = P T
i ) such that

xT [AT
i Pi + PiAi]x < 0 (1.12)

for x ∈ Ωi.

Switching Condition: In addition, based on the MLF theorem of [3], for stability it is also

required that the Lyapunov-like functions’ values at switching instant are non-increasing,

which can be expressed by

xT Pjx ≤ xT Pix

for x ∈ Ωi,j ⊆ Ωi

⋂
Ωj. The region Ωi,j stands for the states where the trajectory passes

from region Ωi to Ωj.

Note that all the above matrix inequalities are constrained in a local region, such as

x ∈ Ωi or Ωi,j. A technique called S-procedure can be applied to replace a constrained

matrix inequality condition by a condition without constraints. To employ the S-procedure,

the regions Ωi and Ωi,j need to be expressed by or be contained in regions characterized

by quadratic forms. For simplicity, we assume here that each region Ωi has a quadratic

representation or approximation, that is

Ωi = {x| xT Qix ≥ 0},
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and regions Ωi,j can be expressed or approximated by

Ωi,j = {x| xT Qi,jx ≥ 0}.

Then the above matrix inequalities can be transformed into unconstrained ones based also

on the S-procedure, namely

Theorem 14 The system (1.1) is (exponentially) stable if there exist matrices Pi (Pi = P T
i )

and scalars α > 0, β > 0, µi ≥ 0, νi ≥ 0, ϑi ≥ 0 and ηi,j ≥ 0, such that





αI + µiQi ≤ Pi ≤ βI − νiQi

AT
i Pi + PiAi + ϑiQi ≤ −I

Pj + ηi,jQi,j ≤ Pi

(1.13)

are satisfied. ¤

The above theorem is an adaptation of a result in [3]. If there is a solution to the above

LMI problem, the exponential stability is verified. In addition, a bound on the convergence

rate can be estimated:

‖x(t)‖ ≤
√

β

α
e−

1
2β

t‖x0‖

where x(t) is the continuous trajectory with initial state x0, and the constants α, β are

solutions of the LMI (1.13). Based on similar arguments, LMI based sufficient conditions for

the discrete-time case can be derived, see e.g., [8].

An example is now presented to illustrate Theorem 14.

Example 1.2 Consider a hybrid system,





ẋ(t) =


 0 10

0 0


x(t), if x(t) ∈ Ω1 = {x|xT Q1x ≥ 0},

ẋ(t) =


 1.5 2

−2 −0.5


x(t), if x(t) ∈ Ω2 = {x|xT Q2x ≥ 0},

(1.14)
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where Q1 =


 −0.25 −0.25

−0.25 2


 and Q2 =


 0.25 0.25

0.25 −2


. Since Q1 = −Q2, it is straight-

forward to verify that Ω1

⋃
Ω1 = R2.

Solving the LMI problem in Theorem 14 results in a solution

P1 =


 0.1000 −0.4500

−0.4500 41.1167


 , P2 =


 4.3792 3.8292

3.8292 6.8833




with a value of β = 41.12. Hence the hybrid system is exponentially stable. Interested

readers may refer to [3] for details and illustration of trajectories and Lyapunov level curves.

Notice that the above conditions are all based on MLF theorems, so the results devel-

oped in this subsection are sufficient only. To reduce the possible conservativeness, a new

kind of polynomial Lyapunov functions has been introduced and investigated for the sta-

bility analysis of hybrid systems. The computation of such polynomial Lyapunov functions

can be efficiently performed using convex optimization, based on the sum of squares (SOS)

decomposition of multivariate polynomials. It is also possible to use SOS techniques to-

gether with the S-procedure to construct piecewise polynomial Lyapunov functions, with

each polynomial as a SOS while incorporating the state constraints, so to generalize piece-

wise quadratic Lyapunov functions. Interested readers may refer to the survey paper [8] for

further references.

1.5 Switching Stabilization

Implicitly, the above MLF results provide methodologies for the design of switching logics

between vector fields so to achieve a stable trajectory, since MLF results characterize the

conditions on switching signals, under which the hybrid system is stable. In this section,

we will explicitly consider the design of stabilizing switching logics for hybrid systems. The

formulation of the problem can be stated as follows.
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• Given a collection of LTI systems ẋ = Aix, design switching logics so that the induced

hybrid system is stable.

This is usually called switching stabilization problem in the literature. It is known that even

when all subsystems are unstable, there still may exist stabilizing switching signals.

1.5.1 Quadratic Switching Stabilization

In the switching stabilization literature, most of the work has focused on quadratic stabi-

lization for certain classes of systems. A hybrid system is called quadratically stabilizable

when there exist switching signals which stabilize the system along a quadratic Lyapunov

function, V (x) = xT Px.

It is known that a necessary and sufficient condition for a pair of LTI systems to be

quadratically stabilizable is the existence of a stable convex combination of the two subsys-

tems’ matrices. Specifically,

Theorem 15 A hybrid system that contains two LTI subsystems, ẋ(t) = Aix(t), i = 1, 2,

is quadratically stabilizable if and only if the matrix pencil γα(A1, A2) = {Aα | Aα = αA1 +

(1− α)A2, 0 ≤ α ≤ 1} contains a stable matrix. ¤

A generalization to more than two LTI subsystems was suggested by using a “min-

projection strategy”, i.e.,

σ(t) = arg min
i∈I

x(t)T PAix(t). (1.15)

Theorem 16 If there exist constants αi ∈ [0, 1], and
∑

i∈I αi = 1 such that

Aα =
∑
i∈I

αiAi,

is stable, then the min-projection strategy (1.15) quadratically stabilizes the switched system.

However, the existence of a stable convex combination matrix Aα is only sufficient for
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switched LTI systems with more than two subsystems. There are example systems for

which no stable convex combination state matrix exists, yet the system is quadratically

stabilizable using certain switching signals. A necessary and sufficient condition for the

quadratic stabilizability of switched controller systems is as follows.

Theorem 17 [12] The switched system is quadratically stabilizable if and only if there

exists a positive definite real symmetric matrix P = P T > 0 such that the set of matrices

{AiP + PAT
i } is strictly complete, i.e., for any x ∈ Rn/{0}, there exists i ∈ I such that

xT (AiP + PAT
i )x < 0. In addition, a stabilizing switching signal can be selected as σ(t) =

mini{xT (t)(AiP + PAT
i )x(t)}. ¤

Analogously, for the discrete-time case, it is necessary and sufficient for quadratic sta-

bilizability to check whether there exists a positive symmetric matrix P such that the set

of matrices {AT
i PAi − P} is strictly complete. Obviously, the existence of a convex combi-

nation of state matrices Aα automatically satisfies the above strict completeness conditions

due to convexity, while the inverse statement is not true in general. Unfortunately, checking

the strict completeness of a set of matrices is NP hard [12]. Interested readers may refer to

survey papers [6, 3, 8] for further references.

Quadratic stability means that there exists a positive constant ε such that V̇ (x) ≤ −εxT x.

All of these methods guarantee stability by using a common quadratic Lyapunov function,

which is conservative in the sense that there are switched systems that can be asymptotically

(or exponentially) stabilized in case when a common quadratic Lyapunov function does not

exist. Therefore, we will turn our attentions to multiple Lyapunov functions, and describe

constructive synthesis methods based on piecewise quadratic Lyapunov function in the next

section, which are mainly based on [11].
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1.5.2 Piecewise Quadratic Switching Stabilization

According to Theorem 14, if there exist real matrices Pi (Pi = P T
i ) and scalars α > 0, β > 0,

µi ≥ 0, νi ≥ 0, ϑi ≥ 0 and ηi,j ≥ 0, satisfying





αI + µiQi ≤ Pi ≤ βI − νiQi

AT Pi + PiA + ϑiQi ≤ −I

Pj + ηi,jQi,j ≤ Pi

then the switched linear system (1.1) is exponentially stable.

In contrast to the stability analysis problem, here the state space partitions Ωi are not

given a priori any more. Actually, the state partitions Ωi, which induce the state-dependent

switching signals, are to be designed. Moreover, the state space cannot be partitioned in

an arbitrary way. The partition of the state space should facilitate the search of proper

quadratic Lyapunov-like functions, and satisfy the non-increasing conditions when switching

occurs. This will be discussed in detail in the following.

State Space Partition

Once again, the purpose of dividing the whole state space Rn into pieces, denoted as Ωi,

is to facilitate the search for Lyapunov-like functions for one of these subsystems. After

successfully obtaining these Lyapunov-like functions associated with each region Ωi, one may

patch them together, following the conditions of the above MLF theorem, so to guarantee

global stability.

For this purpose, it is necessary to require that these regions Ωi cover the whole state

space, i.e., the following covering property holds.

Ω1

⋃
Ω2

⋃
· · ·

⋃
ΩN = Rn.

This condition merely says that there are no regions in the state space where none of the

subsystems is activated.
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Since we will restrict our attention to quadratic Lyapunov-like functions for purpose of

computational efficiency, we will consider regions given (or approximated) by quadratic forms

Ωi = {x ∈ Rn| xT Qix ≥ 0},

where Qi ∈ Rn×n are symmetric matrices, and i ∈ {1, · · · , N}.

The following lemma gives a sufficient condition for the covering property.

Lemma 1.1 [11] If for every x ∈ Rn

N∑
i=1

θix
T Qix ≥ 0 (1.16)

where θi ≥ 0, i ∈ I, then
⋃N

i=1 Ωi = Rn. ¤

Switching Condition

In order to guarantee exponential stability we also need to make sure that

1. Subsystem i is active only when x(t) ∈ Ωi,

2. When switching occurs, it is required to guarantee that the Lyapunov-like function

values are not increasing.

To verify the first requirement, we consider the largest region function strategy, i.e.,

σ(x(t)) = arg

(
max
i∈I

x(t)T Qix(t)

)
. (1.17)

This is due to the selection of subsystems (at state x(t)) corresponding to the largest value

of the region function x(t)T Qix(t).
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Suppose that the covering condition (1.16) holds, i.e.,

N∑
i=1

θix
T Qix ≥ 0

for some θi ≥ 0, i ∈ I. Then, based on the largest region function strategy, the state x

with the current active mode i satisfies xT Qix ≥ 0. This implies that x ∈ Ωi. So the first

condition holds for the largest region function strategy (1.17).

To satisfy the second energy decreasing condition at switching instants, we need to know in

which direction the state trajectory x(t) is passing through the switching surfaces. However,

the switching surface is to be designed, and so such information is lacking in general. Then

we make a compromise and require that

xT Pix = xT Pjx

for states at the switching plane, i.e., x ∈ Ωi ∩ Ωj. Assume that the set Ωi ∩ Ωj can be

represented by the following quadratic form

Ωi ∩ Ωj = {x|xT (Qi −Qj)x = 0}.

Again, applying the S-procedure, we obtain

Pi − Pj + ηi,j(Qi −Qj) = 0,

for an unknown scalar ηi,j, as the switching condition.

Synthesis Condition

The above discussion can be summarized by the following sufficient conditions for the col-

lection of continuous-time systems (1.1) to be exponentially stabilized.

Theorem 18 [11] If there exist real matrices Pi (Pi = P T
i ) and scalars α > 0, β > 0, µi ≥ 0,
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νi ≥ 0, θi ≥ 0, ϑi ≥ 0 and ηi,j, solving the optimization problem:

min β

s.t.





αI + µiQi ≤ Pi ≤ βI − νiQi

AT Pi + PiA + ϑiQi ≤ −I

Pj = Pi + ηi,j(Qi −Qj)

θ1Q1 + · · ·+ θNQN ≥ 0

for all i, j ∈ {1, · · · , N}, then the switched linear system (1.1) can be exponentially stabilized

(with decay rate 1
2β

) by the largest region function strategy (1.17). ¤

The extension of the synthesis method for continuous-time switched linear systems to

discrete-time counterpart is not obvious. The main difficulty is that, unlike the continuous-

time case, discrete-time switched systems do not have the nice property that the switching

occurs exactly on the switching surface. Instead, the switching happens in a region around

the switching surface. As a result, we can not simply capture the switching instants for

discrete-time switched systems as the time instants when the state trajectories cross the

switching surfaces. Therefore, in order to guarantee the non-increasing requirement at the

switching instants for the discrete-time case, we need to include more constraints involving

state transitions for the discrete-time switched systems around the switching surfaces. This

makes the switching stabilization problem for discrete-time switched systems more challeng-

ing.

Some remarks are in order. First, for both the continuous-time and discrete-time cases,

the optimization problem above is a Bilinear Matrix Inequality (BMI) problem, due to the

product of unknown scalars and matrices. BMI problems are NP-hard, and not computa-

tionally efficient. However, practical algorithms for optimization problems over BMIs exist

and typically involve approximations, heuristics, branch-and-bound, or local search. One

possible way to solve the BMI problem is to grid up the unknown scalars, and then solve a

set of LMIs for fixed values of these parameters. It is argued in [11] that the gridding of the

unknown scalars can be made quite sparsely.
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Example 1.3 [11] To illustrate the synthesis procedure, consider the case of two unstable

subsystems given by

A1 =


 1 −5

0 1


 , A2 =


 1 0

5 1


 .

It can be shown that there is no stable convex combination of these two matrices, which

means that the system cannot be quadratically stabilized. However, solving the BMI in The-

orem 18 through gridding up the unknown parameters results in a solution

β = 3.7941, α = 0.2101

and

Q1 = −Q2 =


 −0.08242 0.8648

0.8648 0.8053


 , (1.18)

P1 =


 1.1896 1.1440

1.1440 3.2447


 , P2 =


 3.3325 −1.1044

−1.1044 1.1509


 . (1.19)

Hence, the switched linear system can be exponentially stabilized by the largest region

function strategy (1.17), and the estimate of the exponential convergence becomes ‖x(t)‖ ≤
4.2495e−0.1318t‖x0‖.

So far, we have only derived sufficient conditions for the existence of stabilizing switching

signals for a given collection of linear systems. A more difficult problem has been the necessity

part of the switching stabilizability problem, and a particularly challenging part has been

the problem of finding necessary and sufficient conditions for switching stabilizability. In [7],

a necessary and sufficient condition was proposed for the existence of a switching control

law (in static state feedback form) for asymptotic stabilization of continuous-time switched

linear systems.
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1.6 Conclusion

In this chapter, we gave, by necessity, a brief introduction to the basic concepts and results

of the field of stability and stabilizability of hybrid systems. For further references, we would

suggest several survey papers on the stability of hybrid and switched systems, for example,

[6, 9, 3, 8].
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