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Abstract

In this paper, we study stability and L2 gain properties for a class of switched systems which are
composed of normal discrete-time subsystems. When all subsystems are Schur stable, we show that a
common quadratic Lyapunov function exists for all subsystems and that the switched normal system is
exponentially stable under arbitrary switching. For L2 gain analysis, we introduce an expanded matrix
including each subsystem’s coefficient matrices. Then, we show that if the expanded matrix is normal
and Schur stable so that each subsystem is Schur stable and has unity L2 gain, then the switched normal
system also has unity L2 gain under arbitrary switching. The key point is establishing a common quadratic
Lyapunov function for all subsystems in the sense of unity L2 gain.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In the last two decades, there has been increasing interest in stability analysis and controller
design for switched systems; see the survey papers [1–3], the recent books [4,5] and the
references cited therein. The motivation for studying switched systems is from many aspects.
It is known that many practical systems are inherently multimodal in the sense that several
dynamical subsystems are required to describe their behavior which may depend on various
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environmental factors. Since these systems are essentially switched systems, powerful analysis
or design results of switched systems are helpful for dealing with real systems. Another important
observation is that switching among a set of controllers for a specified system can be regarded
as a switched system, and that switching has been used in adaptive control to assure stability in
situations where stability cannot be proved otherwise [6,7], or to improve transient response of
adaptive control systems [8]. Also, the methods of intelligent control design are based on the idea
of switching among different controllers [9]. Therefore, study on switched systems contributes
greatly in switching controller and intelligent controller design.

When focusing on stability analysis of switched systems, there are three basic problems
in stability and design of switched systems: (i) find conditions for stability under arbitrary
switching; (ii) identify the limited but useful class of stabilizing switching laws; and (iii)
construct a stabilizing switching law. There are many existing works on these problems in the
case where the switched systems are composed of continuous-time subsystems. For Problem
(i), Ref. [10] showed that when all subsystems are stable and pairwise commutative, the
switched linear system is stable under arbitrary switching. Ref. [11] extended this result from the
commutation condition to a Lie-algebraic condition. Ref. [12] showed that a class of symmetric
switched systems are asymptotically stable under arbitrary switching since a common quadratic
Lyapunov function, in the form of V (x) = xTx , exists for all the subsystems. Refs. [13,
14] considered Problem (ii) using piecewise Lyapunov functions, and Ref. [15] considered
Problem (ii) for switched systems with pairwise commutation or Lie-algebraic properties.
Ref. [16] considered Problem (iii) by dividing the state space associated with appropriate
switching depending on state, and Ref. [17] considered quadratic stabilization, which belongs
to Problem (iii), for switched systems composed of a pair of unstable linear subsystems by
using a linear stable combination of unstable subsystems. Related to both Problems (ii) and (iii),
Ref. [18] presented the convergence rate evaluation for simultaneously triangularizable switched
systems, and Ref. [19] investigated the controllability and reachability of switched linear control
systems. As regards the robustness stability/stabilization issue, Ref. [20] considered quadratic
stabilizability of switched linear systems with polytopic uncertainties, and Ref. [21] dealt with
robust quadratic stabilization for switched LTI systems by using piecewise quadratic Lyapunov
functions so that the synthesis problem can be formulated as a matrix inequality feasibility
problem. Refs. [22,12,23] extended the consideration to stability analysis problems for switched
systems composed of discrete-time subsystems.

Motivated by the observation that all these papers deal with switched systems composed of
only continuous-time subsystems or only discrete-time ones, the authors considered in [24] the
new type of switched systems which are composed of both continuous-time and discrete-time
dynamical subsystems, and gave some analysis and design results for several kinds of such
switched systems, for example, the case where the commutation condition holds, and the case of
switched symmetric systems. Recently, the authors extended the results for switched symmetric
systems in [24] to switched normal systems in [25]. For such switched systems, it is shown
that when all continuous-time subsystems are Hurwitz stable and all discrete-time subsystems
are Schur stable, a common quadratic Lyapunov function exists for the subsystems and that the
switched system is exponentially stable under arbitrary switching. Some discussions are also
given for the case where unstable subsystems are involved.

In this paper, we focus our attention on switched systems which are composed of normal
discrete-time subsystems. For such switched systems, we show that if all subsystems are
Schur stable, then the switched system is exponentially stable under arbitrary switching. The
main contribution of this paper is extending the consideration to L2 gain analysis for such
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switched systems. For this purpose, we introduce an expanded matrix including each subsystem’s
coefficient matrices. Then, we show that if the expanded matrix is normal and Schur stable so
that each subsystem is Schur stable and has unity L2 gain, then there is a common quadratic
Lyapunov function for all subsystems in the sense of L2 gain, and the switched normal system
is asymptotically stable and also has unity L2 gain under arbitrary switching. As can be seen
later, the normal assumption using the expanded matrix covers the case of switched symmetric
systems that we dealt with in [23,12], and thus the result of L2 gain analysis here is a nontrivial
extension of the existing works.

The rest of this paper is organized as follows. In Section 2, we give some preliminaries about
normal systems and state the Bounded Real Lemma for discrete-time LTI systems. In Section 3,
we state and prove that if all subsystems are Schur stable and normal, then the switched normal
system is exponentially stable under arbitrary switching. Two numerical examples are given to
demonstrate the effectiveness and the applicability of the result. Section 4 is devoted to L2 gain
analysis. We prove that if all subsystems are normal in the sense of unity L2 gain, then there
is a common quadratic Lyapunov function for all subsystems in the sense of unity L2 gain, and
thus the switched normal system also achieves unity L2 gain under arbitrary switching. Finally,
Section 5 concludes the paper.

Notation: For a vector x ∈ R
n , we use |x | to denote its Euclidean norm

√
x2

1 + x2
2 + · · · + x2

n .
For a symmetric matrix Q, we denote its maximum (minimum) eigenvalue as λM (Q) (λm(Q)),
use Q > 0 (Q ≥ 0) when Q is positive definite (semi-positive definite), and Q < 0 (Q ≤ 0)
when Q is negative definite (semi-negative definite). For two symmetric matrices A, B , we use
A > B when A − B is positive definite, and so on.

2. Preliminaries

We first give some definitions and lemmas concerning normal systems.

Definition 1. A discrete-time system

x(k + 1) = Ax(k) (1)

or the system matrix A is said to be normal if

AT A = AAT. (2)

Definition 2. A real square matrix Q is said to be orthogonal if QT Q = I .

The following lemma characterizes a normal system or matrix by orthogonally equalizing it
to a block-diagonal matrix consisting of its eigenvalues (Theorem 4.10.69 in Ref. [26]).

Lemma 1. Suppose that A ∈ Rn×n is normal, its real eigenvalues are λ1, . . . , λr , and its
complex eigenvalues are a1 ± b1i, . . . , as ± bsi , where ai ’s and bi ’s are real, bi �= 0, r + 2s = n.
Then, there exists an orthogonal matrix Q such that

QT AQ = diag{λ1, . . . , λr ,Λ1, . . . ,Λs }, (3)

where

Λi =
[

ai bi

−bi ai

]
, i = 1, . . . , s. (4)
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The following lemma plays a key role in this paper.

Lemma 2. If the discrete-time system (1) is normal and Schur stable, then

AT A − I < 0. (5)

Proof. Using the fact that Q is orthogonal, we obtain from (3) that

QT(AT A)Q = (QT AT Q)(QT AQ)

= diag{λ1, . . . , λr ,ΛT
1 , . . . ,ΛT

s }diag{λ1, . . . , λr ,Λ1, . . . ,Λs }
= diag{λ2

1, . . . , λ
2
r , a2

1 + b2
1, a2

1 + b2
1, . . . , a2

s + b2
s , a2

s + b2
s }. (6)

Since A is Schur stable, we obtain |λi | < 1 (1 ≤ i ≤ r) and
√

a2
j + b2

j < 1 (1 ≤ j ≤ s) and

thus QT(AT A)Q < I , which is equivalent to (5). �
The next lemma is on L2 gain analysis for discrete-time LTI systems, which we will use in

Section 4.

Lemma 3 ([27]). Consider the discrete-time LTI system

x(k + 1) = Ax(k) + Bw(k)

z(k) = Cx(k) + Dw(k),
(7)

where x(k) ∈ Rn is the system state, w(k) ∈ Rm is the input, z(k) ∈ Rp is the output, A, B, C,
D are constant matrices of appropriate dimensions. The system (7) is Schur stable and has unity
L2 gain (i.e., L2 gain less than 1) if and only if there exists P > 0 satisfying the LMI[

AT P A − P + CTC AT P B + CT D
BT P A + DTC BT P B − I + DT D

]
< 0 (8)

or equivalently[
A B
C D

]T [
P 0
0 I

] [
A B
C D

]
<

[
P 0
0 I

]
. (9)

3. Stability analysis

In this section, we consider stability for the switched system which is composed of a set of
discrete-time subsystems described by

x(k + 1) = Ai x(k), i = 1, . . . , N, (10)

where x(k) ∈ Rn is the subsystem state, Ai (i = 1, . . . , N) are constant matrices of appropriate
dimensions denoting the subsystems, and N ≥ 1 denotes the number of subsystems.

There are two important basic assumptions throughout this paper. First, there is no state
jumping occurring at switching instants. The reason is that in the case where state jumping occurs
with an increase of the state’s norm, arbitrary switching is not possible. If we know that the state
jumping only leads to decrease of the state’s norm, then all the discussion in this paper is the
same. Second, we assume that only one subsystem is being activated at any time instant, and
thus we do not have to consider the synchronization issue even if the subsystems have different
sampling periods. This is reasonable in real applications. For example, in a switching control
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problem involving an open-loop system and several feedback controllers, we usually generate
the control input by choosing only one feedback controller and do not let all the other feedback
controllers work for all time. The second assumption is necessary for the first one, since state
jumping may occur when the subsystems have different sampling periods and synchronization
is not done exactly at the switching instants. However, we note that for general design problems
of switched discrete-time systems, synchronization between sampling time and switching time
is an important issue that has to be discussed carefully.

Since arbitrary switching includes the case of dwelling on certain subsystem for all time, we
make the following necessary assumption.

Assumption 1. All Ai ’s are Schur stable.

It is known that Assumption 1 is not enough to guarantee stability under arbitrary switching.
That is, a switched system composed of stable subsystems could be unstable if the switching
is not done appropriately [1]. In [24], we considered two conditions, namely, the “commutation
condition” and “symmetricity condition”, under which arbitrary switching is possible. Here, we
extend the latter condition by making the following assumption.

Assumption 2. All the subsystems in (10) are normal, i.e.,

AT
i Ai = Ai AT

i . (11)

Remark 1. For switched symmetric systems, it is assumed in [23,24] that AT
i = Ai . Obviously,

Assumption 2 covers such symmetric systems. Furthermore, it covers the cases of AT
i Ai = I ,

AT
i = −Ai and some other cases.

We now state and prove the first result.

Theorem 1. Under Assumptions 1 and 2, the switched system composed of (10) is exponentially
stable under arbitrary switching.

Proof. Since all the subsystems are normal, according to Lemmas 1 and 2, we obtain

AT
i Ai − I < 0, i = 1, . . . , N. (12)

This implies that P = I is a common solution to the Lyapunov matrix inequalities

AT
i P Ai − P < 0, i = 1, . . . , N, (13)

and thus V (x) = xTx is a common quadratic Lyapunov function for all the subsystems.
To show the exponential stability of the system, we find a positive scalar α < 1 such that

AT
i Ai − α2 I < 0 (14)

holds for all i ’s. Such an α always exists; for example, we can choose that α =
max1≤i≤N {λM (AT

i Ai )}. Then, in any time interval, we obtain V (x(k + 1)) < α2V (x(k)). Since
all the subsystems share the Lyapunov function candidate, we obtain for any k ≥ 0 that

V (x(k)) ≤ α2k V (x(0)) = e−(2 ln(α−1))kV (x(0)) (15)

and thus

|x(k)| ≤ e−(ln(α−1))k|x(0)|. (16)
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Fig. 1. The system trajectory and the state’s norm in Example 1.

Noting that we did not add any condition on the switching signal, the switched system is
exponentially stable under arbitrary switching. �

Remark 2. It has been shown in the proof of Theorem 1 that when all subsystems are normal
and Schur stable, V (x) = xTx is a common quadratic Lyapunov function for them.

Example 1. Consider the switched system composed of two subsystems given by

A1 =
[

0.45 0.6
−0.6 0.45

]
, A2 =

[−0.3 −0.4
0.4 −0.3

]
. (17)

It is easy to confirm that both A1 and A2 are normal and Schur stable. Fig. 1 shows the
convergence of the system trajectory where A1 and A2 are activated alternatively with a randomly
determined steps of (6, 5, 9, 3, 4, 7). The initial state is [600 800]T, and the mark “*” in the upper
left part of Fig. 1 describes the state change, while the upper right part of Fig. 1 connects all the
sampling points into a continuous trajectory. The lower part of Fig. 1 shows that the norm of the
system state converges to zero very quickly.

At the end of this section, we note that Theorem 1 is useful in many switching control
problems. Suppose that we have on hand an open-loop feedback system

x(k + 1) = Ax(k) + Bu(k) (18)
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where x(k) is the state, u(k) is the input, A, B are constant matrices of appropriate dimension.
We also suppose that we can design a set of state feedback controllers u(k) = Fi x(k) (i =
1, . . . , Nm ), such that each A + B Fi is normal and Schur stable. This is possible in many cases.
For example, when

A =
[

1 3
2 4

]
, B =

[
1 0
0 −1

]
, (19)

it is easy to know that any feedback gain F =
[

f1 f2
f3 f4

]
, with fi ’s satisfying f1 + f4 = 3,

f3 − f2 = 5, ( f1 + 1)2 + ( f2 + 3)2 < 1, will make A + B F normal and Schur stable. In fact,
there are many F’s satisfying this condition.

If we can (or have to) choose one from the set of controllers at every time instant, the whole
system is a switched system that is composed of Schur stable subsystems. Then, according
to Theorem 1, we see that the system is exponentially stable no matter how we choose the
controllers. This observation is very important in real applications when we want more flexibility
to take other specification into consideration.

Obviously, the above discussion is also applicable to the case of output feedback switching
control problems. Furthermore, a more interesting problem may be feedback control systems
which are composed of a continuous-time plant and discrete-time controllers.

Example 2. For the system (18) with (19), we set

F1 =
[−0.5 −2.5

2.5 3.5

]
, F2 =

[−0.8 −3.6
1.4 3.8

]
(20)

to obtain two closed-loop system matrices

A1 =
[

0.5 0.5
−0.5 0.5

]
, A2 =

[
0.2 −0.6
0.6 0.2

]
(21)

which are normal and Schur stable.
Now, we set the initial state as x0 = [600 800]T and the two controllers are activated

alternatively with three steps and two steps, respectively. Fig. 2 shows the convergence of the
system trajectory under such a switching method.

In this section, we have focused our attention on stability analysis of the switched normal
systems (10) under arbitrary switching, i.e., in the framework of the basic problem (i) which we
mentioned in the introduction. As regards Problem (ii) and (iii) for switching method design, we
have given some discussion in [25], which may be referred to for details.

4. L2 gain analysis

In this section, we consider the L2 gain property for the switched system which is composed
of discrete-time subsystems described by

x(k + 1) = Ai x(k) + Biw(k)

z(k) = Ci x(k) + Diw(k), i = 1, . . . , N,
(22)

where x(k) ∈ Rn is the subsystem state, w(k) ∈ Rm is the input, z(k) ∈ Rp is the output. Ai , Bi ,
Ci , Di (i = 1, . . . , N) are constant matrices of appropriate dimensions denoting the subsystems,
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Fig. 2. The system trajectory and the state’s norm in Example 2.

and N > 1 is the number of subsystems. Although the discussion can be easily extended to the
case of x[0] �= 0, we assume for brevity that x[0] = 0 in this section.

Furthermore, we assume m = p, and define the square matrix

Gi =
[

Ai Bi

Ci Di

]
(23)

to include each subsystem’s coefficient matrices. Throughout this section, we make the following
assumption.

Assumption 3. All Gi ’s are Schur stable and are normal, i.e.,

GT
i Gi = Gi G

T
i . (24)

Remark 3. The condition (24) is computed as[
AT

i Ai + CT
i Ci AT

i Bi + CT
i Di

BT
i Ai + DT

i Ci BT
i Bi + DT

i Di

]
=

[
Ai AT

i + Bi BT
i Ai C

T
i + Bi DT

i

Ci AT
i + Di BT

i Ci C
T
i + Di DT

i

]
(25)

which requires

AT
i Ai + CT

i Ci = Ai AT
i + Bi BT

i

AT
i Bi + CT

i Di = Ai C
T
i + Bi DT

i

BT
i Bi + DT

i Di = Ci C
T
i + Di DT

i .

(26)
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This covers the following symmetricity condition that we have assumed in the existing
works [23,12]:

Ai = AT
i , Bi = CT

i , Di = DT
i . (27)

In other words, the symmetric switched systems satisfying (27), which we have considered in [23,
12], all satisfy the normal condition (24).

Furthermore, the condition (24) or (25) also includes the case of skew-symmetric systems
described by

Ai = −AT
i , Bi = −CT

i , Di = −DT
i . (28)

Since Gi is normal and Schur stable, according to Lemma 2, we obtain

GT
i Gi − I < 0 (29)

which is equivalent to

[
Ai Bi

Ci Di

]T [
Ai Bi

Ci Di

]
<

[
I 0
0 I

]
. (30)

Comparing the above inequality with the matrix inequality (9) in Lemma 3, we obtain that under
Assumption 3, the i th subsystem is Schur stable and has unity L2 gain with P = I satisfying the
LMI (9). In this case, we say that the subsystems in (22) are normal in the sense of unity L2 gain.
Since this fact is true for all Gi ’s, we see that all subsystems have a common quadratic Lyapunov
function V (x) = xTx in the sense of unity L2 gain.

We now compute the difference of the Lyapunov function V (x) = xTx along the trajectory
of any subsystem to obtain

V (x(k + 1)) − V (x(k))

= xT(k + 1)x(k + 1) − xT(k)x(k)

= (Ai x(k) + Biw(k))T (Ai x(k) + Biw(k)) − xT(k)x(k)

= [
xT(k) wT(k)

] [
AT

i Ai − I AT
i Bi

BT
i Ai BT

i Bi

] [
x(k)

w(k)

]

≤ − [
xT(k) wT(k)

] [
CT

i Ci CT
i Di

DT
i Ci DT

i Di − I

] [
x(k)

w(k)

]

= −
(

zT(k)z(k) − wT(k)w(k)
)

, (31)

where (30) was used to obtain the inequality, and the inequality holds strictly when either x(k)

or w(k) is not zero.

For an arbitrary piecewise constant switching signal and any given integer k > 0, we let
k1, . . . , kr (r ≥ 1) denote the switching points over the interval [0, k). Then, using the difference
inequality (31), we obtain
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V (x(k)) − V (x(kr )) ≤ −
k−1∑
j=kr

Γ ( j)

V (x(kr )) − V (x(kr−1)) ≤ −
kr −1∑

j=kr−1

Γ ( j)

· · · · · · · · · · · ·

V (x(k1)) − V (x(0)) ≤ −
k1−1∑
j=0

Γ ( j),

(32)

where Γ ( j) � zT( j)z( j) − wT( j)w( j). Since the case of x( j) ≡ 0, w( j) ≡ 0, 0 ≤ j ≤ k, is
a trivial one and is thus excluded in our L2 gain analysis, there is at least one of the inequalities
in (32) that should hold strictly (i.e., without “=”). We add all the inequalities to get to

V (x(k)) − V (x(0)) < −
k−1∑
j=0

Γ ( j). (33)

In this inequality, we use the assumption that x(0) = 0 and the fact that V (x(k)) ≥ 0 to obtain

k−1∑
j=0

zT( j)z( j) <

k−1∑
j=0

wT( j)w( j), (34)

which implies that unity L2 gain is achieved. Since the above inequality holds for any k > 0
including the case of k → ∞, and there is not any restriction added on the switching signal (the
switching signal can be arbitrary), we say that the switched system achieves unity L2 gain under
arbitrary switching.

We summarize the above discussion in the following theorem.

Theorem 2. If all subsystems in (22) are normal in the sense of unity L2 gain (satisfying
Assumption 3), then there is a common quadratic Lyapunov function V (x) = xTx for all
subsystems in the sense of unity L2 gain, and thus the switched normal system (22) achieves
unity L2 gain under arbitrary switching. �

Remark 4. For brevity, we consider unity L2 gain in this section. In the case of L2 gain γ , since
the LMI (9) in Lemma 3 takes the form of[

A B
C D

]T [
P 0
0 I

] [
A B
C D

]
<

[
P 0
0 γ 2 I

]
, (35)

what we have to do is to replace Gi of (23) with

Giγ =

⎡
⎢⎢⎣

Ai
1√
γ

Bi

1√
γ

Ci
1

γ
Di

⎤
⎥⎥⎦ . (36)

In the case where each subsystem has a different L2 gain γi , we define γ = maxi γi and proceed
in the same way.
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Finally, we relax Assumption 3 slightly by making the following assumption instead.

Assumption 3′. All Gi ’s are neutrally Schur stable (GT
i Gi ≤ I ) and are normal, satisfying (24).

Under Assumption 3′, the matrix P = I satisfies the nonstrict LMI[
Ai Bi

Ci Di

]T [
P 0
0 I

] [
Ai Bi

Ci Di

]
≤

[
P 0
0 I

]
(37)

for all i = 1, . . . , N .
Using the same discussion as in Theorem 2, we obtain that under arbitrary switching, the

inequality

k−1∑
j=0

zT( j)z( j) ≤
k−1∑
j=0

wT( j)w( j) (38)

holds for any k > 0, which implies that nonstrict unity L2 gain is achieved.

Corollary 1. If all subsystems in (22) are normal in the sense of nonstrict unity L2 gain
(satisfying Assumption 3′), then there is a common quadratic Lyapunov function V (x) = xTx for
all subsystems in the sense of L2 gain, and thus the switched normal system (22) also achieves
nonstrict unity L2 gain under arbitrary switching. �

5. Conclusion

In this paper, we have studied stability and L2 gain properties for a class of switched systems
which are composed of normal discrete-time subsystems. When all subsystems are Schur stable,
we have shown that V (x) = xTx is a common quadratic Lyapunov function for the subsystems
and that the switched normal system is exponentially stable under arbitrary switching. As regards
L2 gain analysis, we have introduced an expanded matrix including each subsystem’s coefficient
matrices, and have shown that if the expanded matrix is normal and Schur stable so that each
subsystem is Schur stable and has unity L2 gain, then the switched normal system also has unity
L2 gain under arbitrary switching. The key point is establishing a common quadratic Lyapunov
function for all subsystems in the sense of unity L2 gain.
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