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Hybrid Output Feedback Stabilization for LTI Systems
with Single Output

Hai Lin

Abstract— This note presents a hybrid control scheme for a class of
continuous-time LTI systems that cannot be stabilized by a single static
output feedback (SOF) controller. The main idea here is to design multiple
SOF gains and proper logic rules that orchestrate switching among these
gains so as to achieve the global stability. One challenge, however, is
that the switching logic should be in the output feedback form as well.
This may seriously restrict the possible choices of switching surfaces,
especially when the output is just a scalar. To overcome this difficulty, a
multirate sampling control scheme is proposed. Under this framework, a
hybrid output feedback stabilizing controller is designed, and sufficient
controller synthesis conditions are proposed as linear matrix inequalities
based on multiple Lyapunov function theorems. The note concludes with
a discussion on possible extensions and future research topics.

Index Terms— Hybrid Systems, Static Output Feedback, Stabilization,
Multiple Lyapunov Functions.

I. INTRODUCTION

Static output feedback (SOF) stabilization is a well-known open
problem in systems and control theory [4], [25]. The problem is
motivated by the fact that it is not always possible to have access
to the full state vector for practical plants, and that only a partial
information through the measured output is available in most cases.
In addition, compared with a dynamic controller/observer, the static
output feedback controller has advantages like ease of implementation
and maintenance, higher reliability and better cost-efficiency. Further-
more, many problems involving the synthesis of dynamic controllers
can be reformulated as a SOF control design involving augmented
plants [25]. Therefore, the SOF problem has been attracting a lot of
researchers’ attention, and various approaches have been developed.
For example, constructive approaches based on the resolution of
Riccati equations [14], pole or eigenstructure assignment techniques
[24], optimization methods based on matrix inequalities [8], [22], [3],
and so on. For a comprehensive review, please refer to [25].

Although the SOF stabilization problem can be simply formulated,
it is non-convex and NP-complete [5]. Because of the non-convexity,
the existing necessary and sufficient conditions for the SOF stabi-
lizability are not numerically tractable. Moreover, it is known that
the systems that can be stabilized by a (single) SOF controller are
limited [25]. This motivates us to consider a hybrid output feedback
controller scheme, which switches among multiple SOF controllers
to fulfill the stabilization task [15], [9]. In particular, this note will
focus on the following continuous-time LTI system�

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t),

(1)

where the state x ∈ Rn, output y ∈ Rp (assume p = 1, i.e., single
output), control input u ∈ Rm. It is assumed that the system (1)
cannot be stabilized by a single SOF gain F to make the problem
nontrivial. The basic idea here is to design multiple SOF gains, Fi,
which “partially stabilize” the system (1), and to design a switching
logic, which orchestrates switching among these Fi’s so as to stabilize
the system (1) globally.

Notice that the switching logic should also depend solely on the
measured output, i.e., in an output feedback form. Since only partial
information on the state vector is available, we can only detect
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the state trajectories passing through certain specific surfaces, which
seriously restricts the choice of possible switching surfaces. Contrary
to the traditional switching stabilization problem [15], [21], [12], [18],
where the switching surfaces are totally free design variables, the
design of switching logic for multiple SOF controllers presents a
new challenge.

There are some related works in the switched system literature
on using a hybrid controller to stabilize linear systems. In [19], it
was shown that if a continuous-time LTI system is controllable and
observable, then it admits a stabilizing hybrid output feedback that
uses a countable number of discrete states. Then, a natural question
is whether it is possible to stabilize such a system by using a hybrid
output feedback with only a finite number of discrete modes. This
question was explicitly raised by Artstein in [2] via an interesting pla-
nar system example, harmonic oscillator, which cannot be stabilized
by a SOF, but can be stabilized by a hybrid controller. In [11], a conic
switching law was proposed to exponentially stabilize a class of single
input and single output (SISO) second order LTI systems, which is
reachable and observable. Also for the second order SISO LTI system,
a root locus based analysis was presented in [23] for the existence of a
switched output feedback controller. For higher order LTI systems, a
two mode hybrid output feedback control method, based on piecewise
quadratic Lyapunov functions, was proposed in [16]. Unfortunately,
all the proposed switching rules in [16], [2], [11], [23] may need
the state information, which are usually not available for the output
feedback design. Hence, [11] proposed a periodic time-controlled
switching implementation via explicitly calculating the time period
between two successive switchings. An interesting work based on
periodically switched output feedback stabilization was reported in
[1] for SISO LTI systems, where necessary and sufficient conditions
for stabilizability were given as bilinear matrix inequalities. Note
that the class of switched systems that can be stabilized by periodic
switching laws is not generic [1]. In addition, periodically time-
controlled switching is actually an open-loop switching logic, which
is not an ideal solution, especially in the face of disturbances or
uncertainties.

This note aims to design a hybrid output feedback controller,
including the design of multiple SOF gains and an output feedback
based switching logic, so as to stabilize the system (1). The rest of
the note is organized as follows. In Section II, a detectable state space
partition is obtained based on the multirate sampling method, where
the detectablility is with respect to the output measurements. Then,
the multiple SOF gains and switching logic co-design problem is
investigated in Section III based on a well-known multiple Lyapunov
function theorem. Then, the harmonic oscillator example is revisited
for illustration. Finally, the note concludes with some remarks and
possible future extensions.

Notation: The notations used throughout the note are quite stan-
dard. The relation A > B (A < B) means that the matrix A−B is
positive (negative) definite, similar for A ≥ B. The superscript (·)T

stands for matrix transposition, and the notation M−1 denotes the
right inverse matrix of M , i.e., MM−1 = I . The matrix I stands
for identity matrix of proper dimensions.

II. MULTIRATE SAMPLING

To carry out the hybrid output feedback design, a partition of the
state space is necessary. In addition, the partition should be based
on the output signal y(t) only. However, this is a very challenging
task for the single output case, since y(t) is just a scalar and only
provides very limited information about the position of the state x(t)
(such as on which side of the hyperplane Cx = 0 the state x(t)
lies, or whether x(t) passes through the hyperplane Cx = 0). This
is obviously not enough to design a meaningful partition of the state
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Fig. 1. Multirate sampling mechanism illustrated for the single input and
single output case.

space. Hence, a method based on multirate sampling techniques is
proposed in this section. The multirate sampling technique has been
used in the literature of SOF to augment input/output so as to make
the arbitrary pole placement possible, e.g., [10]. Here, a modified
version of the multirate sampling scheme is employed, and the main
purpose here is to generate a partition of the state space Rn.

Using the sampled data control scheme and connecting a sampler
and a zero-order hold with basic sampling period Ts > 0 to (1)’s
output and input respectively, the input is given as

u(t) =

�
0, kTs ≤ t < kTs + τ
u(kTs + τ), kTs + τ ≤ t < (k + 1)Ts,

(2)

where 0 < τ < Ts. Substituting u(t) into (1), we obtain

x(kTs + τ) = eAτx(kTs) (3)

and

x(kTs + Ts) = eATsx(kTs) +

Z Ts

τ

eAsdsBu(kTs + τ). (4)

Detecting the output at every kTs and kTs + τ , the sampled value
is given by y(kTs) = Cx(kTs) and

y(kTs + τ) = Cx(kTs + τ) = CeAτx(kTs)

respectively. Define a new output

ȳ[k] =

�
y(kTs)

y(kTs + τ)

�
,

then
ȳ[k] =

�
C

CeAτ

�
x[k],

where x[k] = x(kTs). Furthermore, denote u(kTs + τ) as u[k],
Ā = eATs , B̄ =

R Ts

τ
eAsdsB, and

C̄ =

�
C

CeAτ

�
.

Then, we obtain the following sampled data system of (1) as�
x[k + 1] = Āx[k] + B̄u[k]

ȳ[k] = C̄x[k].
(5)

The multirate sampling mechanism is illustrated in Figure 1.
Note that the introduction of a new row to the output matrix

makes it possible to partition the state space based on the output ȳ[k]
alone. Here, we propose to use the hyper-planes that are generated
by the row vectors of matrix C̄, namely hyper-planes Cx = 0 and
CeAτx = 0, as switching surfaces. For notational simplicity, denote

C and CeAτ as c1 and c2 respectively in the sequel. Notice that
these two hyper-planes both pass through the origin. Therefore, the
following two cones can be generated:

Ω1 = {x|c1x ≥ 0 ∧ c2x ≥ 0}
_
{x|c1x ≤ 0 ∧ c2x ≤ 0},

and

Ω2 = {x|c1x ≥ 0 ∧ c2x ≤ 0}
_
{x|c1x ≤ 0 ∧ c2x ≥ 0}.

It is straightforward to verify that Ω1

S
Ω2 = Rn, and they have

mutually exclusive interiors. Hence, we obtain a conic partition of
the state space.

It is also interesting to note that the discrete event, like “switching
into” or “switching out of” a region Ωi (i = 1, 2) occurring within
the sampling period (k− 1)Ts < t ≤ kTs, can be easily detected by
observing the sign changes of a proper multiplication of elements in
ȳ[k]. For example, following the previous expression

x(kTs) ∈ Ω1 ⇔ x[k]T (cT
1 c2 + cT

2 c1)x[k] ≥ 0

⇔ ȳT
1 [k]ȳ2[k] ≥ 0,

where ȳ1[k] = y(kTs) and ȳ2[k] = y(kTs + τ). On the other hand,
x(kTs−Ts) ∈ Ω2 if and only if ȳT

1 [k−1]ȳ2[k−1] ≤ 0. Therefore, by
simply observing the sign changes of the product ȳT

1 [k]ȳ2[k], we can
determine whether a switching from region Ω2 to region Ω1 occurred
within the period (k − 1)Ts < t ≤ kTs. Hence, this kind of conic
partition can be easily implemented solely based on the measured
output ȳ[k].

In addition, these cones can be represented in a quadratic form.
For example, the quadratic form characterizing the region Ω1 defined
above is obtained by multiplying the two half-planes together, i.e.,
Ω1 = {x : xT Q1x ≥ 0}, where Q1 = cT

1 c2 + cT
2 c1. Similarly,

Q2 = −Q1 for Ω2.

III. STABILIZATION

This section aims to design the multiple SOF gains Fi ∈ Rm×2

and a proper switching law, σ(ȳ[k]) : R2 → {1, 2}, such that the
following discrete-time switched system�

x[k + 1] = (Ā + B̄Fσ(ȳ[k])C̄)x[k]
ȳ[k] = C̄x[k]

(6)

is exponentially stable. Note that the exponential stability of (6)
implies the asymptotic stability of the continuous-time system (1)
since for any t > 0 there exists k such that kTs ≤ t < (k + 1)Ts,
and

‖x(t)‖ = ‖eĀσ(ȳ[k])(t−kTs)x(kTs)‖ ≤ ‖eĀi(t−kTs)‖‖x(kTs)‖
= ‖eĀi(t−kTs)‖‖x[k]‖ ≤ κξk‖x[0]‖ = κξk‖x(0)‖,

where κ > 0 and 0 < ξ < 1 are positive scalars, and

eĀi(t−kTs)

=

�
eA(t−kTs), t− kTs < τ

eA(t−kTs) +
R t−kTs

τ
eAsdsBFiC̄, t− kTs ≥ τ.

A. Multiple Lyapunov Function Theorem

Since the subsystems of (6) may be unstable, there may not exist
Lyapunov functions for the subsystems. However, it is still possible to
restrict our concern in certain regions of the state space, say Ωi ⊂ Rn,
and the abstracted energy of the i-th subsystem may be decreasing
along the trajectories inside this region. This idea is captured by the
concept of Lyapunov-like function.

Definition 1: By saying that the i-th subsystem has an associated
Lyapunov-like function Vi in a region Ωi, we mean that
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1) There exist constant scalars βi ≥ αi > 0 such that

αi‖x[k]‖2 ≤ Vi(x[k]) ≤ βi‖x[k]‖2

hold for any x[k] ∈ Ωi;
2) For all x[k] ∈ Ωi and x[k] 6= 0,

∆Vi(x[k]) = Vi(x[k + 1])− Vi(x[k]) ≤ −ν‖x[k]‖2,
holds for some positive scalar ν.

The first condition implies the positiveness and radius unbounded-
ness for Vi(x) when x ∈ Ωi, while the second condition guarantees
the decreasing of the abstracted energy, value of Vi(x), along
trajectories of the subsystem i inside Ωi. For convenience, the region
Ωi is called the active region for the i-th subsystem.

Suppose that all these regions Ωi cover the whole state space, then
we get a cluster of Lyapunov-like functions. To study the global sta-
bility of a switched system, one needs to concatenate these Lyapunov-
like functions together and form a non-traditional Lyapunov function,
called multiple Lyapunov function (MLF). The non-traditionality is
in the sense that the MLF may not be monotonically decreasing along
the state trajectories, may have discontinuities, and may be piecewise
differentiable. The MLF is proved to be a powerful tool for studying
the stability of switched systems, see e.g. [7], [20], [15], [9]. Here,
we recall a MLF theorem from [9], [21].

Theorem 1: Suppose that each subsystem of (6) has an associated
Lyapunov-like function Vi in its active region Ωi, each with equilib-
rium point x = 0. Also, suppose that

S
i Ωi = Rn. Let S be a class

of switching sequences such that any switching signal σ(k) ∈ S can
take value i only if x[k] ∈ Ωi, and in addition

Vj(x[ki,j ]) ≤ Vi(x[ki,j ])

where ki,j denotes that a switching from the subsystem i to the
subsystem j occurs during the period, (ki,jTs − Ts, ki,jTs], i.e.,
x[ki,j − 1] ∈ Ωi while x[ki,j ] ∈ Ωj . Then, the switched system
(6) is exponentially stable under the switching signals σ(k) ∈ S . 2

The basic idea is that the MLF’s value would decrease when a
subsystem is activated, i.e., no switching, while at every switching
instant the MLF’s value is also non-increasing. It is worth pointing
out that there exist various versions of MLF theorems [20], [15], [9],
[17], which could be less conservative than the version presented
here. However, the current form of MLF theorem guarantees the
exponential stability and simplifies the controller design below.

In the sequel, we will restrict our attention to multiple quadratic
Lyapunov-like functions [13], [21], which are attractive due to their
computational tractability and the existence of software packages.

B. Quadratic Lyapunov-like Functions

Using the conic partition derived in Section II, the existence of a
quadratic Lyapunov-like function Vi(x) = xT Pix for each Ωi needs
to satisfy the following two conditions:

1) Condition 1: There exist constant scalars βi ≥ αi > 0 such
that

αi‖x‖2 ≤ Vi(x) ≤ βi‖x‖2

holds for all x ∈ Ωi.
Consider a quadratic Lyapunov-like function candidate, Vi(x) =

xT Pix, and require that

αix
T Ix ≤ xT Pix ≤ βix

T Ix (7)

hold for all xT Qix ≥ 0. Applying the S-procedure [6], the above
constrained inequalities (7) are implied by the following LMIs�

αiI − Pi + ηiQi ≤ 0
Pi − βiI + ρiQi ≤ 0,

where ηi ≥ 0 and ρi ≥ 0 are unknown scalars. Define two scalars,
α = mini{αi} and β = maxi{βi}. Notice that 0 < α ≤ β.

2) Condition 2: For all x[k] ∈ Ωi, x[k] 6= 0,

∆Vi(x[k]) = Vi(x[k + 1])− Vi(x[k]) ≤ −ν‖x[k]‖2,
where x[k + 1] = Āix[k] and Āi = Ā + B̄FiC̄.

This is equivalent to

x[k]T (ĀT
i PiĀi − Pi + νI)x[k] ≤ 0, (8)

for x[k] ∈ Ωi.
Let’s recall the Finsler’s Lemma [6], which has been used previ-

ously in the control literature mainly with the purpose of eliminating
design variables in matrix inequalities.

Lemma 1 (Finsler’s Lemma): Let ζ ∈ Rn, P = P T ∈ Rn×n, and
H ∈ Rm×n such that rank(H) = r < n. The following statements
are equivalent:

1) ζT Pζ < 0, for all ζ 6= 0, Hζ = 0;
2) ∃X ∈ Rn×m such that P + XH + HT XT < 0. 2

Applying the Finsler’s Lemma to a strict inequality version of (8),
with

P =

� −Pi 0
0 Pi

�
, ζ =

�
x[k]

x[k + 1]

�
, X =

�
Ei

Gi

�
,

and H =
�

Āi −I
�
, then (8) is implied by

ζT

�
ĀT

i ET
i + EiĀi − Pi + νI ĀT

i GT
i − Ei

GiĀi − ET
i Pi −Gi −GT

i

�
ζ < 0,

for ζT

�
Qi 0
0 0

�
ζ ≥ 0. Here Ei, Gi ∈ Rn×n are unknown

matrices.
Applying the S-procedure [6], the above constrained stability

condition is implied by the following unconstrained condition for
unknown matrices Pi = P T

i , Ei, Gi ∈ Rn×n, and scalars ν > 0,
ϑi ≥ 0,�

ĀT
i ET

i + EiĀi − Pi + νI + ϑiQi ĀT
i GT

i − Ei

GiĀi − ET
i Pi −Gi −GT

i

�
< 0.

(9)
The above matrix inequality (9) is implied by the following LMI

in matrices Pi (Pi = P T
i ), Mi, Ni, and scalars ν > 0, ϑi ≥ 0,8<:

� −Pi + νI + ϑiQi ĀT GT
i + C̄T NT

i B̄T

GiĀ + B̄NiC̄ Pi −Gi −GT
i

�
< 0

B̄Mi = GiB̄
(10)

To see this, plug in B̄ = GiB̄M−1
i , set Fi = M−1

i Ni, and note that
Āi = Ā + B̄FiC̄, then it implies (9) with Ei = 0.

C. Switching Condition

Following Theorem 1, in order to guarantee the exponential sta-
bility, we also need to make sure that

1) the i-th subsystem is active only when x[k] ∈ Ωi;
2) when a switching occurs, the value of the MLF is not increas-

ing.
The design of switching laws to satisfy the first condition is not

straightforward, since checking whether x[k] ∈ Ωi needs to detect
both y(kTs) and y(kTs + τ). However, y(kTs + τ) is not available
at the beginning of each sampling period t = kTs. To overcome
this difficulty, the sampled data control scheme is implemented as
follows. The input signal u(t) is reset to 0 during the interval kTs ≤
t < kTs + τ , and updated at t = kTs + τ when y(kTs + τ) is
measured. Actually, the controller needs to check which region Ωi

the state x[k] = x(kTs) lies in, and then updates the control input
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accordingly. For example, if x[k] ∈ Ω1, then the continuous input
signal is updated as

u(t) = F1

�
y(kTs)

y(kTs + τ)

�
= u[k] = F1C̄x[k],

for kTs + τ ≤ t < (k + 1)Ts.
For the second condition, assume that a switching, i → j, occurs

within the time interval, (k− 1)Ts < t ≤ kTs, i.e., x[k] ∈ Ωj while
x[k − 1] ∈ Ωi for i 6= j. It is required that Vj(x[k]) ≤ Vi(x[k]),
which means that

x[k]T (Pj − Pi)x[k] ≤ 0 (11)

holds for x[k − 1] ∈ Ωi, x[k] = Āix[k − 1] ∈ Ωj .

Applying the Finsler’s Lemma with P =

�
0 0
0 Pj − Pi

�
, ζ =�

x[k − 1]
x[k]

�
, X =

�
Eij

Gij

�
, and H =

�
Āi −I

�
, (11) is

implied by

ζT

�
ĀT

i ET
ij + EijĀi ĀT

i GT
ij − Eij

GijĀi − ET
ij Pj − Pi −Gij −GT

ij

�
ζ < 0 (12)

for ζT

�
Qi 0
0 Qj

�
ζ ≥ 0. Here Eij , Gij ∈ Rn×n are unknown

matrices.
Applying the S-procedure, the above constrained stability condi-

tion (12) is implied by the existence of unknown matrices Pi = P T
i ,

Eij , Gij ∈ Rn×n, and scalars ϑij ≥ 0, such that�
ĀT

i ET
ij + EijĀi + ϑijQi ĀT

i GT
ij − Eij

GijĀi − ET
ij Pj − Pi −Gij −GT

ij + ϑijQj

�
is negative definite.

This is implied by the following LMI in matrices Pi (Pi = P T
i ),

Pj (Pj = P T
j ), Mj , Nj , Gi, and scalar ϑij ≥ 0,8<:

�
ϑijQi ĀT GT

i + C̄T NT
i B̄T

GiĀ + B̄NiC̄ Pj − Pi −Gi −GT
i + ϑijQj

�
< 0

B̄Mi = GiB̄
(13)

and Fi = M−1
i Ni.

D. Synthesis Condition

In summary, a sufficient condition for the continuous-time LTI
system (1) being asymptotically stabilized by the proposed switched
multiple SOF controller can be presented as the following theorem.

Theorem 2: For a given sampling period Ts and detecting time
0 < τ < Ts, if there exist matrices Pi (Pi = P T

i ), Gi, Mi, Ni, and
scalars α > 0, β > 0, ν > 0, ηi ≥ 0, ρi ≥ 0, ϑi ≥ 0, ϑij ≥ 0, that
make the the following LMI8>>>>>><>>>>>>:

αI + ηiQi ≤ Pi ≤ βI − ρiQi� −Pi + νI + ϑiQi ĀT GT
i + C̄T NT

i B̄T

GiĀ + B̄NiC̄ Pi −Gi −GT
i

�
< 0

B̄Mi = GiB̄�
ϑijQi ĀT GT

i + C̄T NT
i B̄T

GiĀ + B̄NiC̄ Pj − Pi −Gi −GT
i + ϑijQj

�
< 0

(14)

feasible for all i, j ∈ {1, 2}, i 6= j, where

Ā = eATs , B̄ =

Z Ts

τ

eAsdsB, and C̄ =

�
C

CeAτ

�
,

then the proposed hybrid output feedback controller with

Fi = M−1
i Ni

asymptotically stabilizes the continuous-time LTI system (1). 2
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Fig. 2. The plot of ‖x(t)‖ for system (15) under the switched multiple SOF
control for various detecting time τ .

The feasibility of (14) guarantees the exponential stability of the
sampled data system (6), which implies the asymptotic stability of
the continuous-time linear system (1).

If (14) is not feasible, one may choose to change the sampling
period Ts or the detecting time τ , which further changes the state
matrices Ā, B̄, C̄ and the partition of the state space, i.e., Qi’s.
With these new state matrices and Qi’s, it may become possible to
find a feasible solution for (14). Actually, the selection of Ts, τ and
the design of static feedback gains are coupled together. So iterative
design process may be necessary for some cases.

As an example to illustrate the proposed method, the harmonic
oscillator with position measurements [2], [16] is revisited here,
which is described as8<: ẋ =

�
0 1

−1 0

�
x +

�
0
1

�
u

y =
�

1 0
�
x

(15)

Although this system is both controllable and observable, it can-
not be stabilized by a (single) SOF [2]. Applying the multirate
sampled data control scheme with Ts = 0.1s and τ = 0.5Ts,

we obtain Ā =

�
0.9950 0.0998
−0.0998 0.9950

�
B̄ =

�
0.0012
0.0500

�
, and

C̄ =

�
1 0

0.9988 0.0500

�
, then the proposed switched multiple

SOF controller with F1 =
�

396.1171 −395.1271
�

and F2 =�
240.3499 −239.7491

�
asymptotically stabilize (15). This is

illustrated in Figure 2. In addition, the procedure is tested for some
different values of τ as shown in Figure 2, which suggests that the
system (15) can be stabilized by the proposed hybrid output feedback
control scheme for a wide range of variations in the detecting time
τ .

IV. CONCLUDING REMARKS

In this note, a new hybrid output feedback control scheme was
proposed to stabilize a class of continuous-time LTI systems with
single output. The arguments were based on the multirate sampling
technique and the Multiple-Lyapunov-Function theorem. While this
note focused only on the single output case, the proposed design
procedure could be extended to the case of multi-output (i.e., p > 1)
without essential changes. In addition, the multirate sampling scheme
can be extended via detecting the output y(t) more than once within
a sampling period Ts, e.g., over a sequence of detecting time 0 <
τ1 < τ2 < · · · < τk < Ts. Then, with more information on y(t), it
becomes possible to further partition the state space and design more
multiple output feedback gains correspondingly, and hence improve
the chance to stabilize the system. A natural question is how generic
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the method could be. We ask whether it is always possible to find a
pair of sampling period Ts and detecting time τ (or a sequence of
detecting time 0 < τ1 < τ2 < · · · < τk < Ts) such that the system
(assumed to be reachable and observable) can be stabilized by the
proposed multiple SOF controller scheme. If not, what conditions the
state matrices {A, B, C, D} should satisfy?
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