EE40458
Nonlinearity & Noise

Yet another lecture from the road
Recap & Perspective

• An overview – where have we been recently:
 – General linear system theory
 • S-parameters, but also equivalent small-signal models like the hybrid-π model, etc.
 • Give linear response of circuit/system; can use superposition & Fourier analysis to determine output for arbitrary input signal
 • “Gain, phase” at each frequency; no new frequencies, no signal components that were not present in the input signal
 • Strictly applies only for systems governed by linear differential equations (any order, but constant coefficients)
 • Approximately applies to most systems if signals are small (equivalent to approximating function with first two terms (constant plus linear) in Taylor series)
Recap & Perspective (cont.)

• Overview (continued):
 – Nonlinear effects
 • Many important systems are not well approximated with a linear description
 • Examples: almost any component under high power conditions (e.g. heating); amplifiers driven with large inputs (or designed for switching-mode operation for high efficiency); devices for harmonic generation, mixing, or detection (nonlinear response is desired)
 • Our approach: Taylor series expansion of transfer characteristic, resulting in polynomial representation of response
 – We simplified to neglect memory, history-dependent effects (e.g. heating); assumed output depends only on instantaneous input value. More advanced approaches exist to handle this
 • Conclusions: saw harmonic generation (plus DC shift), intermodulation products (e.g. sum & difference frequencies)
 • Figures of merit: $P_{1\text{dB}}$ (gain compression), P_{IP3} (third order intermodulation)
Nonlinear Figures of Merit - Review

• Gain compression – P_{1dB}:
 – Single input tone
 – Map output power (at input frequency) vs. power of input signal
 – Linear theory: output power proportional to input power; nonlinear effects tend to cause saturation:
 \[v'_o(t) = k_1A \left[1 - \frac{3}{4} \left| \frac{k_3}{k_1} \right| A^2 \right] \cos(\omega t) \]
 – Note: input is power in single tone; output power “counted” is only the power at this frequency (i.e., the harmonic power is not included)
Nonlinear Figures of Merit - Review

• Gain compression – \(P_{1\text{dB}} \):

 – Definition: Input 1 dB compression point, \(P_{1\text{dB}} \), is input power at which output is 1 dB below the linear case.

 $$v'_o(t) = k_1 A \left[1 - \frac{3}{4} \left| \frac{k_3}{k_1} \right| A^2 \right] \cos(\omega t)$$

 – Note: some data sheets will report the output 1 dB compression point (e.g. the y-axis, rather than x-axis). Depends on intended application.
Nonlinear Figures of Merit - Review

- **Intermodulation –** P_{IP3}:
 - Saw complicated relationship with two input tones
 - Figure of merit: for comparison of components – P_{IP3}
 - Two input tones, equal amplitude (for figure of merit); small enough that gain compression can be neglected: $v_{in}(t) = A [\cos(\omega_1 t) + \cos(\omega_2 t)]$
 - Output power at close-in intermodulation product frequencies vs. power of input signal. Near ω_1 and ω_2, have:

$$v'_o(t) = k_1A \left[\cos(\omega_1 t) + \cos(\omega_2 t) \right] + k_3 \frac{3}{4} A^3 \left[\cos(2\omega_2 - \omega_1) t + \cos(2\omega_1 - \omega_2) t \right]$$

![Diagram of input and output frequencies with in-band and close-in products indicated.](image-url)
Nonlinear Figures of Merit - Review

• Intermodulation – P_{IP3} (continued):
 – Purpose of P_{IP3} figure of merit: quantify relationship between P_{in}, P_{out} (at signal frequency), and intermodulation products
 – Map power in “desired” frequencies (first term) to power in intermodulation products (second term)

\[
v_{in}(t) = A\left[\cos(\omega_1 t) + \cos(\omega_2 t)\right]
\]

\[
v_{o}'(t) = k_1 A\left[\cos(\omega_1 t) + \cos(\omega_2 t)\right] + k_3 \frac{3}{4} A^3 \left[\cos(2\omega_2 - \omega_1)t + \cos(2\omega_1 - \omega_2)t\right]
\]

\[
P_{in} \propto \frac{1}{2} A^2
\]

\[
P_{d} \propto \frac{1}{2} k_1^2 A^2 \propto P_{in}
\]

\[
P_{im} \propto \frac{1}{2} k_3^2 \frac{9}{16} A^6 = k_3^2 \frac{9}{4} A P_{in}^3
\]

P_{in} = power at each input tone
P_{d} = power at each desired output tone
P_{im} = power at each intermod output tone
Nonlinear Figures of Merit - Review

• Intermodulation – graphically:

 – Graph P_d, P_{im} vs. P_{in}, usually on log-log scale (all powers in dBm)

 – Reminder: dBm = 10*\log10(P/1 mW)

\[
\begin{align*}
 P_{in} &\propto \frac{1}{2} A^2 \\
 P_d &\propto \frac{1}{2} k_1^2 A^2 \propto P_{in} \\
 P_{im} &\propto \frac{1}{2} k_3^2 \frac{9}{16} A^6 = k_3^3 \frac{9}{4} A P_{in}^3
\end{align*}
\]

– P_{IP3}: intercept between linear (P_d) and intermod (P_{im}) terms

– Intercept is “fictitious”; in practice, based on low power data (avoid gain compression); real lab data includes everything...

\[
\begin{align*}
P_d (dBm) &= Gain(dB) + P_{in} (dBm) \\
P_{im} (dBm) &= offset + 3 P_{in} (dBm)
\end{align*}
\]
Intermodulation Analysis

• Measurement:
 – Measure P_d, P_{im} at several (low) levels of P_{in}
 • Can easily separate P_d, P_{im} (on spectrum analyzer) because at different frequencies
 • Use slope of 1 for P_d vs. P_{in} (in dBm)
 • Use slope of 3 for P_{im} vs. P_{in} (in dBm)
 • Find intercept point; input IP3 (P_{ip3}, IIP3) or output IP3 (OIP3) can be projected

• Analysis:
 – “Intermodulation Ratio”: $IMR = \frac{P_{im}}{P_{d}} = \left(\frac{P_{in}}{P_{IP3}} \right)^2$
 – Convenient relation:
 • Relate expected intermodulation products from (known) IIP3 and P_{in}
 • Find IIP3 given measured P_{im}, P_d
Noise

• Linear and nonlinear analysis relates output to input stimulus
 – Linear: small signals; non-linear: large signals
• Circuits, systems also produce outputs independent of input: noise
 – Ultimately, noise limits our ability to resolve/recover/process very small signals
• Noise is fundamental – cannot be eliminated; but can be managed
• Sources of noise:
 – Thermal noise: random motion of carriers (electrons, holes) in resistive material
 – Shot noise: cause by random timing of events
 • Current is made of up of flow of electrons, but they have some “jitter” in when they arrive; this generates shot noise
 – Flicker or 1/f noise: trapping/detrapping, often defect or surface related; has ~1/f noise power spectral density
Thermal Noise

• Let’s look at thermal noise in a resistor:

\[e_n(t) \]

\[\langle e_n \rangle = 0 \]

\[\langle e_n^2 \rangle = 4kTBR \]

– Reminder: \(k = 1.38 \times 10^{-23} \text{ J/K} \) (Boltzmann’s const.), \(T \) (in Kelvin)
– Expect average voltage = 0 (no net flow, equal opposite flows)
– But variance ≠ 0; voltage variance proportional to noise power
– B: bandwidth of measurement—how much noise power you see depends on how wide of a frequency range you look at

• Potential problem: noise power goes up as bandwidth increases—no limit?
 – Not really... this conclusion comes from simplistic assumption on carrier statistics. But if \(T \sim 300 \text{ K} \), is good approx. for frequencies to \(\sim 1 \text{ THz} \) or so
Modeling Noise

• For analysis, need equivalent circuit for analysis
• One option: model noisy resistor as noiseless resistor with associated noise source (Thevenin or Norton options):
 \[\langle e_n \rangle = 0, \langle i_n \rangle = 0 \]
 \[\langle e_n^2 \rangle = 4kTB, \langle i_n^2 \rangle = 4kTB/R \]
• Can we get power from these sources? Yes, but… Consider:

 – Power available: \[\frac{e_n^2}{4R} = kTB \] Independent of \(R \)
 – Power transfer? If both resistors at same temperature, net flow = 0 (equal/opposite flows). If at different temperatures, power from hot to cold (attempts to equilibrate the system). You knew that.
Modeling Noise (cont.)

• How about complex impedances?
 – One can show that:
 \[Z(f) = R(f) + jX(f) \]
 \[\langle e_n^2 \rangle = 4kT \int_{-B}^{B} R(f) \, df \]
 – No noise from reactances (no loss or dissipation, no noise)

• Numerical example:
 – Noise voltage across at 1 M\(\Omega\) resistor in bandwidth of 100 MHz (e.g. typical oscilloscope input)
 \[4kT = 1.6 \times 10^{-20} \text{ J} \quad (T=290 \text{ K}) \]
 \[\langle e_n^2 \rangle = 4kTBR = 1.6 \times 10^{-20} \cdot 10^6 \cdot 10^8 = 1.6 \times 10^{-6} \text{ V}^2 \]
 \[\text{rms voltage} : \sqrt{\langle e_n^2 \rangle} = 1.26 \times 10^{-3} \text{ V} \]
 – Can see why oscilloscopes have minimum 2 mV/div scales...anything smaller is just noise
Excess Noise

• Many components exhibit additional noise, beyond the thermal contributions
 – Often modeled as if it were thermal noise, but with modified parameters (i.e., fudge factors)

• Two common approaches:
 – Circuit analysis approach (typical):
 • Introduce R_n as fudge factor, $\langle e_n^2 \rangle = 4kTBR_n$
 • $R_{\text{noiseless}}$ is actual R value for circuit
 • For pure thermal noise (no excess noise), $R_{\text{noiseless}}=R_n$
 – System analysis approach:
 • Use T as fudge factor: $\langle e_n^2 \rangle = 4kT_n BR$
 • T_n no longer “thermometer” temperature; if excess noise present, $T_n>T$
 • Concept of “noise temperature” is common, and what we’ll (mostly) use
Noise Temperature Example

• An example: antenna
 – At resonant frequency, antenna impedance (Z_{ant}) is resistive
 – $Z_{ant} = R_{ohmic} + R_{rad}$
 • R_{ohmic}: from loss in the conductors, a “real” resistance
 • R_{rad}: accounts for conversion from input power to radiated power (think of antenna as broadcasting)
 – Temperatures?
 • R_{ohmic}: at physical temperature of the antenna—electrons bouncing around in conductors due to random thermal motion
 • R_{rad}: at an “effective” temperature, T_A
 • T_A is “fudge factor” to allow us to make output noise of antenna match the power actually received
 • Fun fact: “Cosmic background radiation” – 1978 Nobel prize – measured $T_A \sim 3K$, when expected to be 0 (dark sky)
Noise in Two-Port Networks

• So far, everything has just been about how much noise a one-port circuit makes. But two-port networks are more useful—have inputs, outputs

• Basic idea: two-port network does some function (amplify, mix, etc), but also adds some noise
 – Schematically:

 – T_E: effective noise temperature of two-port network
 • Is a function of Z_s, frequency; characterizes the network, not Z_s
Noise in Two-Port Networks, cont.

- To include effects of both two-port and termination, use “operating temperature”, T_{op}
 - $T_{op} = T_E + T_s$
 - Adding temperatures: same as adding powers. Assumes no correlation between noise sources

Characterization? Two-port network has s-parameters, plus T_E
Noise Factor

• Another common way to characterize the noise added by a two-port network is the noise factor and noise figure

• Two equivalent definitions:
 – Definition #1: \(\text{Noise Factor} \equiv \frac{\text{Input SNR}}{\text{Output SNR}} \bigg|_{T_s=T_0=290\,\text{K}} \)

\[
F = \frac{S_{in}/N_{in}}{S_{out}/N_{out}} = \frac{S_{in}/N_{in}}{G_A S_{in}/N_{out}} = \frac{N_{out}}{G_A N_{in}}
\]

\(T_0 = 290\,\text{K} \) (std. temp.)
\(S_{in} \) = available signal power
\(N_{in} \) = available noise power
\(S_{out} \) = available output signal
\(N_{out} \) = available output noise
\(G_A \) = available gain: \(S_{out}/S_{in} \)
\(N_A \) = noise added by 2-port (per sandwich)
Noise Factor & Noise Figure

• Alternative view:
 – Definition #2: \[F \equiv \frac{\text{Actual available noise power (output)}}{\text{Available noise power if two-port was noiseless}} \]

Result:
\[F = \frac{N_{out}}{G_A N_{in}} = \frac{N_A + G_A N_{in}}{G_A N_{in}} \]

• Can be framed in terms of temperatures:
\[F = 1 + \frac{N_A}{G_A N_{in}} = 1 + \frac{N_A / G_A}{N_{in}} = 1 + \frac{kT_E B}{kT_O B} = 1 + \frac{T_E}{T_o} \]
 – So providing F is equivalent to providing T

• Technically, F=noise factor

• Noise Figure is more common; F converted into dB
 – \[NF = 10 \times \log_{10}(F) \]
Noise Figure

• Caution:
 – From definition #1: \[\text{Noise Factor} = \frac{\text{Input SNR}}{\text{Output SNR}} \mid T_s = T_o = 290 \text{K} \]
 – Looks like noise figure should be how much (in dB) the SNR degrades because of the noise of the two port
 – This is not strictly true: note that this is true only if \(T_s = T_o\)
 – As we saw, \(T_s\) can be an effective temperature with no obvious connection to “thermometer” temperatures (e.g. if signal came from an antenna, etc)

• So noise figure should be thought of as a “test-based metric”
 – In the lab, can test the SNR with \(T_s = T_o\), and find NF
 – In real systems, \(T_s\) is almost never \(T_o\), so the actual SNR change can be quite different
Noise Figure and LNA Design

• How is this related to our LNA design approach?

• Recall:

\[F = F_{\text{min}} + \frac{4R_n}{Z_0} \frac{|\Gamma_s - \Gamma_{\text{opt}}|^2}{\left(1 + \Gamma_{\text{opt}} \right)^2 \left(1 - |\Gamma_s|^2 \right)} \]

• This shows explicitly how F depends on \(Z_s \) (\(Z_s \leftrightarrow \Gamma_s \))
 – This is important if you’re doing detailed circuit design (e.g. of an amplifier to meet a specific noise figure target)

• But for system design or analysis, the \(Z_s \) is usually already defined and fixed
 – Block diagram-level interconnections; not re-designing the individual components
 – Example: making a system by interconnecting available “50 Ω” components

 • In this case, \(T_E \) is sufficient (if \(T_E \) is for the \(Z_s \) in question)
Noise Figure and Loss

• A special-case two-port is the matched attenuator
• Passive device—just a resistor network. Typically designed to have input & output impedance matched to Z_o, with a specified attenuation (e.g., 3 dB. 6 dB. etc).

• What is it’s noise figure?
 – Since network is just passive, at output appears as Z_o termination at physical temperature; $N_{out} = kTB$
 – But regular two-port equations also apply: $N_{out} = kTB \cdot G_A + G_A \cdot N_{added}$
 – Loss=1/Gain, so: $T_E = T_{att} (L-1)$
 – If $T_{att}=T_o$,
 \[
 F = 1 + \frac{T_E}{T_o} = 1 + \frac{T_{att}}{T_o} (L-1)
 \]
 then $F=L$
System Noise Analysis

• Common situation: want to evaluate noise performance of a system consisting of several building blocks cascaded together.

\[T_E = T_{E1} + \frac{T_{E2}}{G_{A1}} \]

\[F = 1 + \frac{T_E}{T_O} = F_1 + \frac{F_2 - 1}{G_{A1}} \]

• Overall noise?
 – Can show:

 – Careful: G’s are available power gains, T_E’s must be for actual impedances presented.
System Noise Example

• Consider two amplifiers in cascade:

\[
\begin{align*}
T_E &: 100k \\
G_1 &: 10
\end{align*}
\]

\[
\begin{align*}
T_E &= 100k + \frac{1000k}{10} \\
&= 200k \\
F &= 1 + \frac{T_E}{T_0} \\
&= 1 + \frac{200k}{200k} \\
&= 1.69 \quad \text{(not dB)}
\end{align*}
\]

\[
NF = 10 \log_{10} (F) = 2.3 \text{ dB}
\]

\[
\begin{align*}
T_E &= 100k + \frac{100k}{10} \\
&= 1010k
\end{align*}
\]

\[
F = 4.48, \quad NF = 6.5 \text{ dB}
\]

• And if we reverse the order of the amplifiers?
 – Gain is the same, but what about noise?

 Note: *usually* want the lowest T_E amplifier in front. But not always—the gains also play a role.
Receiver Sensitivity

- For radio receivers, sensitivity is limited by noise floor
- Define: minimum detectable signal (MDS) for given SNR
 - Often choose 0 dB as the threshold (though other choices are possible depending on the system)
- Example:

 ![Diagram of receiver sensitivity](image)

 - Results:
 - \(NF = 8 \text{ dB} \rightarrow F=6.31 \rightarrow T_E = 1540 \text{ K} \)
 - \(T_{op} = 290 \text{ K} + 1540 \text{ K} = 1830 \text{ K} \)
 - \(N_{out} = k T_{op} B G_A; S_{out} = S_{in} G_A; \quad SNR_{out} = \frac{S_{out}}{N_{out}} = \frac{S_{in}}{kT_{op} B} \)
 - Setting \(SNR_{out} = 1 \rightarrow S_{in} = 5.3 \times 10^{-17} \text{ W} = -132.8 \text{ dBm} \)
 - Effective noise floor of the receiver; for reference, thermal noise at 290 K = -174 dBm/Hz
Noise Figure Measurement

• Basic idea: measure output noise power for two different source temperatures
 - From this, can separate contribution from source and from two-port

• “Y factor” measurement: output powers
 - $N_H = k(T_E + T_H)BG_A$
 - $N_C = k(T_E + T_C)BG_A$
 - $Y = \frac{N_H}{N_C} = \frac{T_E + T_H}{T_E + T_C}$; $T_E = \frac{T_H - YT_C}{Y - 1}$
Noise Figure Measurement

• For “hot” and “cold” input terminations, could use resistors at different temperatures
 – For best measurements, want largest possible difference between hot and cold temperatures (cryogenic resistor, hot resistor)
• Inconvenient in practice, often use “noise diode” instead
 – Diode off (no bias): room temperature resistor (thermal noise)
 – Diode “on” (biased in reverse breakdown): avalanche breakdown process is very noisy, acts like “hot” resistor
 • Characterized by the “excess noise ratio”
 \[
 \text{ENR} = 10 \log_{10} \left(\frac{T_H - 290}{290} \right)
 \]
 • Typical ENR ~15 dB; \(T_H \approx 9461 \text{ K} \) (Solar surface ~6000 K). Much bigger temperature difference than possible using “thermometer” temperatures
 – A caveat: we know that amplifier noise figure depends on \(\Gamma_s \): so if diode has different impedance in “on” and “off” states, measurement can be off—often use “low ENR” diode to avoid this. Just a regular “high ENR” diode, followed by an attenuator
Dynamic Range

• For systems, very important consideration
• Dynamic range: range of input signal amplitudes for which the system has “acceptable” performance
 – System-level considerations dictate what counts as “acceptable” – some systems can tolerate more distortion than others, etc.
 – Limited for large input signals by nonlinearities
 – Limited for small input signals by noise
 – So we’ll be combining the last few topics together
Dynamic Range Definition

• Basic notional system picture:

• With this framework in mind, can define dynamic range:

\[
DR = \frac{\text{max. usable input power}}{\text{min. usable input power}} = \frac{P_{\text{max}}}{P_{\text{min}}}
\]

• Usually expressed in dB—since these are powers, \(10 \log_{10}(DR)\)
Spur Free Dynamic Range

• One common (but not universal!) choice for “acceptable” performance: spur free dynamic range (SFDR)
• SFDR = DR_f (same thing, different terminology)
 – For SFDR: $P_{\text{min}} =$ minimum detectable signal (MDS)
 • But what is the MDS? Smallest P_{in} that will provide a specified SNR at the output. Often this “reference” SNR=1
 – For SFDR: $P_{\text{max}} =$ input signal level at which 3rd-order in-band products are equal to $P_{\text{min}} (=\text{MDS})$
• Easier to understand (I think) as a picture
Spur Free Dynamic Range

- SFDR in pictures:
 (think of 2-tone intermod measurement)

- $P_{\text{min}} =$ minimum detectable signal (MDS)
- $P_{\text{max}} =$ input signal level at which 3^{rd}-order in-band products are equal to MDS

- Basic idea: intermodulation is never larger than the noise—no “spurs”
 - In microwave-speak, “spur” is short for “spurious signal”. Not poking horses.
Spur Free Dynamic Range

• Analytically: using \(IMR = \frac{P_{im}}{P_d} = \left(\frac{P_{in}}{P_{IP3}} \right)^2 \)

from our previous analysis, can work out SFDR, etc.

• Basic approach: consider IMR when \(P_{in} = P_{max} \)

\[
IMR = \frac{P_{im}}{P_d} = \left(\frac{P_{max}}{P_{IP3}} \right)^2 \\
P_{im} = P_{min} \cdot G; \quad P_d = P_{max} \cdot G \\
IMR = \frac{P_{min} G}{P_{max} G} = \frac{P_{min}}{P_{max}} = \left(\frac{P_{max}}{P_{IP3}} \right)^2
\]
Spur Free Dynamic Range

• Since \(IMR = \frac{P_{\text{min}} G}{P_{\text{max}} G} = \frac{P_{\text{min}}}{P_{\text{max}}} = \left(\frac{P_{\text{max}}}{P_{IP3}} \right)^2 \)

it follows (just re-arranging) that:

\[P_{\text{min}} = \frac{P_{\text{max}}^3}{P_{IP3}^2}; \quad P_{\text{max}} = P_{\text{min}}^{1/3} \cdot P_{IP3}^{2/3} \]

• Remember:
 – \(P_{\text{min}} \) comes from noise analysis, so is known
 – \(\text{SFDR} = \frac{P_{\text{max}}}{P_{\text{min}}} \)

• Final result:

\[\text{SFDR} = \left(\frac{P_{IP3}}{P_{\text{min}}} \right)^{2/3} \]
Spur Free Dynamic Range

- Careful: previous page was all in MKS (or similar) units
- Usually specify these things in dB:

\[
SFDR = \left(\frac{P_{IP3}}{P_{\text{min}}} \right)^{2/3}
\]

Becomes:

\[
SFDR(dB) = \frac{2}{3} \left[P_{IP3}(dB) - P_{\text{min}}(dB) \right]
\]

- Not complicated—just be careful
- One final note: the book gets the same results, but from another path; Pozar does the analysis from the point of view of the output power (vs. input like done here).
Congratulations

• You made it to the end.

• We’ll have a review session at our regular class period on Thursday – come with your questions about the final exam
Topics Covered This Year

- RF models – lumped element RLC models of common components (l< $\lambda/10$)
 - Behavior, resonances (series, parallel), some uses of these parasitic phenomena
- Electromagnetic analysis of transmission line structures
 - Maxwell’s eq., boundary conditions, assumptions made for solution
- Transmission-line models
 - Derivation from lumped-element sections, parameters (α, β, γ), significance of each
 - Meaning and role of Z_o, v_p, λ, etc.
 - Source, load mismatch effects; reflection coefficients, impedance transforms, VSWR, translation along lines, boundary conditions
 - Power transmission
 - Stub impedance/admittance; origin, uses
- Fun with Smith charts
- Lumped-element matching network design
- Distributed circuits
 - $\lambda/4$ transformers
 - Series-line matching networks, single-stub matching networks, double-stub
 - Limitations, design procedures, detailed understanding
 - Bandwidth effects in matching networks
- Network analysis
 - S, Y, Z parameters – matrix representations, definitions, finding matrix elements from circuits
 - Circuit analysis using matrix representations
 - Flow graphs, Mason’s rule
 - Generalized s-parameters
Topics Covered This Year (2)

• Amplifier design cases as considerations
 – Simultaneous conjugate matching conditions – maximum gain
 – Design for specified gain; gain circles, trade-offs (e.g. for bandwidth)
 – Design for noise figure; noise figure circles, interaction with gain circles
 – Detailed understanding and ability to design circuits

• Power gain definitions & use
 – Operating power gain (G_P), available power gain (G_A), transducer power gain (G_T)
 – Definitions, significance of each
 – What is each good for?

• Stability
 – Meaning/significance of stability
 – Source, load stability circles
 – Interpretation of the circles
 – k-Δ, μ tests and what they mean
 – Unconditional stability: definition, concepts

• Nonlinear effects
 – Derivations, foundations
 – Gain compression
 – Intermodulation
 – Definitions: P_{IP3}, P_{1dB}, IMR, blocking, desensitization, cross modulation
 – Input/output spectra, frequencies present, etc.

• Noise
 – Thermal noise in resistors/passives
 – Available noise
 – Effective noise temperature, noise resistance
 – Noise in 2-ports: T_E, F, NF
 – Noise measurement (Y factor)
 – Cascaded noise figure
 – Receiver sensitivity (MDS)
 – Dynamic range (SFDR)