EE 40458 Power Gain and Amplifier Design

10/31/2017

Motivation

- Brief recap:
 - We've studied matching networks (several types, how to design them, bandwidth, how they work, etc...)
 - Studied network analysis techniques (matrices with S, ABCD, ...; flow graphs, etc.)
 - But why? Ultimate goal: design a circuit that does something useful
- Amplifiers are a good starting point
 - Useful for many (all?) systems
 - Fundamental principles can be applied to other circuits

Design/Analysis Approach

- Could approach design many ways
 - "Regular" circuit design: use equivalent circuit model (hybrid-π, T model)
 - We'll take an alternative: treat active device as (known) 2-port S-matrix
- This approach allows us to be more general (results will apply more widely)
 - Example: we'll be able to project what the highest gain possible is, whether or not the circuit is stable (i.e., will it oscillate?); not always so obvious from equivalent circuits without a lot of work
 - Side bonus: we'll get to see what features of Smatrices are desirable for circuits; help us choose devices

Amplifiers – It's (Mostly) About Gain

- From previous classes—of course gain is the key thing
- But it isn't quite so simple for high-frequency systems
- Recall: from "regular" circuit design: gain was (mostly) voltage gain Av; sometimes (more rarely) current gain
 - But you don't really need an amplifier for either of these!
 - A transformer can produce voltage gain (and a lot of it...)
 - More generally, a matching network trades voltage gain for current gain (or visa-versa)
- What do amplifiers really do, then?
 - Power gain is the key feature: not just voltage or current in isolation

Power Gain

- Power gain: not quite so simple as it might look: $Gain = \frac{P_{out}}{P_{in}}$
- OK—but what is P_{out} and P_{in}, exactly? There are several (useful) possibilities, we need to be clear which we mean
 - With voltage, current gain these ambiguities are less troublesome

Power Gain – Definitions

 Since input, output power can be defined different ways, multiple definitions for power gain (not just one gain; there are several different alternatives!)

 $G_{P} = \frac{P_{L}}{P_{in}} = \frac{Power \ delivered \ to \ load}{Power \ delivered \ (absorbed \ by) \ network}$ $G_{T} = \frac{P_{L}}{P_{avs}} = \frac{Power \ delivered \ to \ load}{Power \ available \ from \ source}$ $G_A = \frac{P_{avn}}{P_{avs}} = \frac{Power \ available \ from \ network}{Power \ available \ from \ source}$ [S] (Z₀)

Power Gain - Comparisons

- G_P: "operating power gain," most obvious, but not all that useful
- G_A: "available gain," good baseline for comparisons, shows what performance is possible

$$G_{P} = \frac{P_{L}}{P_{in}} = \frac{Power \ delivered \ to \ load}{Power \ delivered \ (absorbed \ by) \ network}$$

$$G_{T} = \frac{P_{L}}{P_{avs}} = \frac{Power \ delivered \ to \ load}{Power \ available \ from \ source}$$

$$G_{A} = \frac{P_{avs}}{P_{avs}} = \frac{Power \ available \ from \ network}{Power \ available \ from \ source}$$

- G_T: "transducer gain," most useful in system context, analysis
- What's the difference among these?
 - Do you count what actually gets into the network (P_{in}) or what could have gotten in (P_{avs})?
 - Same idea at output ($P_L vs. P_{avs}$)
 - Degree of mismatch is the difference

Distinctions Among Power Gain Definitions

 How much power is transferred depends on the impedances/reflection coefficients:

- P_{in}: power carried by a₁, minus that reflected off (b₁)
- P_{avs}: what's the most power you could get from the source (if it were conjugately matched)?
- P_{avn}: what's the most power available from S?
- P_L: power dissipated in Z_L

Numerical Comparisons?

• How do these three definitions compare in terms of magnitude? $G_{T} = \frac{P_L}{P_L}; G_{T} = \frac{P_L}{P_L}; G_{L} = \frac{P_{avn}}{P_{avn}}$

$$G_T = \frac{T_L}{P_{avs}}; \quad G_P = \frac{T_L}{P_{in}}; \quad G_A = \frac{T_{avn}}{P_{avs}}$$

- $G_A > G_T$ (because $P_L < P_{avn}$ from mismatch)
- $G_P > G_T$ (because $P_{in} < P_{avs}$...)
- But not clear if G_P, G_A larger...depends on relative degree of source, load mismatch
- Can derive each gain from flow graph:

Power Gain Expressions

• Power gains: $G_{T} = \frac{1 - |\Gamma_{S}|^{2}}{|1 - \Gamma_{in}\Gamma_{S}|} |S_{21}|^{2} \frac{1 - |\Gamma_{L}|^{2}}{|1 - S_{22}\Gamma_{L}|^{2}} = \frac{1 - |\Gamma_{S}|^{2}}{|1 - S_{11}\Gamma_{S}|} |S_{21}|^{2} \frac{1 - |\Gamma_{L}|^{2}}{|1 - \Gamma_{out}\Gamma_{L}|^{2}}$ $G_{P} = \frac{1}{1 - |\Gamma_{in}|^{2}} |S_{21}|^{2} \frac{1 - |\Gamma_{L}|^{2}}{|1 - S_{22}\Gamma_{L}|^{2}}$ $G_{A} = \frac{1 - |\Gamma_{S}|^{2}}{|1 - S_{11}\Gamma_{S}|^{2}} |S_{21}|^{2} \frac{1}{1 - |\Gamma_{out}|^{2}}$ • Where:

Amplifier Design

- With these definitions, we can start designing for real
- Several useful special cases for designs:
 - Maximum gain
 - Specified gain (i.e. trade lower gain for more bandwidth)
 - Low noise
- Let's do an example of each one to see how they work

Design for Maximum Gain

- For maximum gain: want to conjugately match both the input and output—simultaneously
- Mathematically: $\Gamma_{in} = \Gamma_S^*$ $\Gamma_{out} = \Gamma_I^*$
 - Note: can work with reflection coefficients since Z <-> Γ as a 1-to-1 map
 - Also, in this case, $G_T = G_A$; maximizing power in and out

- So: how to design?
 - Basic idea:

- Our job:

- Make input matching network present ${\Gamma_s}^* = {\Gamma_{in}}$
- Make output matching network present $\Gamma_{\rm L}$ *= $\Gamma_{\rm out}$
- (So it is really just about making matching networks once the correct "targets" for Γ_{s} , Γ_{L} are found)

• Design approach: know input, output must be conjugately matched. So:

$$\Gamma_{in} = \Gamma_S^*$$
$$\Gamma_{out} = \Gamma_L^*$$

• But we also know

$$\Gamma_{in} = S_{11} + \frac{S_{12}S_{21}\Gamma_L}{1 - S_{22}\Gamma_L}$$
$$\Gamma_{out} = S_{22} + \frac{S_{12}S_{21}\Gamma_S}{1 - S_{11}\Gamma_S}$$

- So: $\Gamma_{\rm S}$ depends on $\Gamma_{\rm L}$ (and visa-versa)
 - Must solve for both $\Gamma_{\rm S}$ and $\Gamma_{\rm L}$ simultaneously (a single solution that satisfies all the constraints)
 - Book goes through the algebra in some detail...

• Bottom line: there is a unique solution for $\Gamma_{\rm S}$ and $\Gamma_{\rm L}$

$$\Gamma_{S} = \frac{B_{1} \pm \sqrt{B_{1}^{2} - 4|C_{1}|^{2}}}{2C_{1}}$$
$$\Gamma_{L} = \frac{B_{2} \pm \sqrt{B_{2}^{2} - 4|C_{2}|^{2}}}{2C_{2}}$$

Where:

$$B_{1} = 1 + |S_{11}|^{2} - |S_{22}|^{2} - |\Delta|^{2}$$

$$B_{2} = 1 + |S_{22}|^{2} - |S_{11}|^{2} - |\Delta|^{2}$$

$$C_{1} = S_{11} - \Delta S_{22}^{*}$$

$$C_{2} = S_{22} - \Delta S_{11}^{*}$$

$$\Delta = S_{11}S_{22} - S_{12}S_{21} \quad (\det(S))$$

- So: what to do with this?
- Find [S] of amplifying element (transistor, usually plus bias networks)
- Compute Γ_{s} , Γ_{L} from [S]
- Design input matching network to go from source to $\Gamma_{\rm S}$

• Design output matching network to go from load to $\Gamma_{
m L}$

Input & Output Matching

• So: maximum gain amplifier design is really designing two matching networks:

Input & Output Matching

 So: maximum gain amplifier design is really designing two matching networks:

Specified Gain Design

- Key point: already know how to design an amplifier with maximum gain. Why would we ever go for less?
 - Need specific signal level
 - More likely: need more bandwidth than max. gain design can deliver; to get bandwidth, need to give up something else
- Approach: look at G_T expression:

$$G_{T} = \frac{1 - |\Gamma_{S}|^{2}}{|1 - \Gamma_{in}\Gamma_{S}|} |S_{21}|^{2} \frac{1 - |\Gamma_{L}|^{2}}{|1 - S_{22}\Gamma_{L}|^{2}} = \frac{1 - |\Gamma_{S}|^{2}}{|1 - S_{11}\Gamma_{S}|} |S_{21}|^{2} \frac{1 - |\Gamma_{L}|^{2}}{|1 - \Gamma_{out}\Gamma_{L}|^{2}}$$

• Note: 3 basic terms (source, S_{21} , and load) $G_T = G_S \cdot G_O \cdot G_L$

- But a little complicated: G_S depends on load, G_L depends on source
- Yuck. So let's make a simplifying assumption—that [S] is unilateral (e.g. $S_{12} = 0$). Then $\Gamma_{in}=S_{11}$ and $\Gamma_{out}=S_{22}$
- Net result: $G_{S} = \frac{1 |\Gamma_{S}|^{2}}{|1 S_{11}\Gamma_{S}|^{2}}; \quad G_{L} = \frac{1 |\Gamma_{L}|^{2}}{|1 S_{22}\Gamma_{L}|^{2}}$
- So how can we set/change the gain? Introduce (intentionally) mismatch at source and/or load

- For maximum gain, conjugate match at both input and output: $\Gamma_{s}=S_{11}^{*}$, $\Gamma_{L}=S_{22}^{*}$ (remember, we're assuming unilateral)
- So the maximum G_S, G_L become:

$$G_{S,\max} = \frac{1}{1 + \pi \left| S_{\max} \right|^2}; \quad G_{L,\max} = \frac{1}{1 + \pi \left| S_{\max} \right|^2}$$

 It turns out (read: after much algebra, you dan show if you are lucky and factor things just exactly right) that:

constant $|G_S|$ and $|G_L|$ plot as circles in the Γ_S and Γ_L planes

- These are the "constant gain circles"
- Mathematically: $g_s = \frac{G_S}{G_{S,max}}; g_L = \frac{G_L}{G_{L,max}}$

Source side:

Load side:

C: coordinates (on imaginary plane) of center of circle R: radius

- So: idea is to figure out how much mismatch to introduce at input, output to get desired gain
- Total gain: $G_T = G_S \cdot G_O \cdot G_L$
 - Designer chooses G_S, G_L so that G_T comes out at value desired (but remember, G_S≤ G_{S,max}; G_L≤G_{L,max})
 - In principle, any combination is ok (results in the correct gain)
 - But usually want to get something in exchange for the trade (e.g. bandwidth)
 - That additional trade is where design insight comes in

Example: Specified Gain

- Example 12.4 in Pozar is a good example
- Summary: design an amplifier at 4 GHz with 11 dB gain; try to maximize the bandwidth

- Given: transistor S-parameters: • Can compute $G_{S,max}$; $G_{L,max}$ $S = \begin{bmatrix} 0.75 \angle -120 & 0 \\ 2.5 \angle 80 & 0.6 \angle -70 \end{bmatrix}$

$$G_{S,\max} = \frac{1}{1 - |S_{11}|^2}; \ G_{L,\max} = \frac{1}{1 - |S_{22}|^2}$$

Numerically: $G_{S,max} = 2.29 = 3.6 \text{ dB}$; $G_{L,max} = 1.56 = 1.9 \text{ dB}$ $Go = |S_{21}|^2 = 6.25 = 8 dB$

- Max gain: 13.5 dB. We can give up 2.5 dB in combination of G_s , G_1

Example: Specified Gain (cont.)

- Pick a few choices for G_s , G_1
- Plot the gain circles: \bullet

Example: Specified Gain (cont.)

- OK...
- Remember:
 - $G_{S,max} = 3.6 dB$ $G_{L,max} = 1.9 dB$
- Options:
 - G_s=3 dB,
 - G_L=0 dB
 - $G_s = 2 dB$ $G_l = 1 dB$

 Both of these sets are 2.5 dB less than the maximum, give us 11 dB total

Example: Specified Gain (cont.)

- How to choose?
- Trade for something else—like bandwidth
- Recall: for largest bandwidth, matching network should not "work hard"
- Pick Γ_{S} , Γ_{L} nearest center of $G_{L} = 1 \text{ dB} \quad g_{L} = 0.806$ $G_{L} = 0 \text{ dB} \quad g_{L} = 0.640$ Smith Chart—"laziest" matching network
- If pick roughly equal input, output matching networks, overall BW maximized (filters in cascade)

 $G_S = 3 \text{ dB}$

 $G_S = 2 \text{ dB}$

 $g_S = 0.875$

 $g_S = 0.691$

 $G_L = 1 \text{ dB}$

 $C_S = 0.706 \angle 120^\circ$

 $C_S = 0.627 \angle 120^\circ$

 $C_L = 0.520 \angle 70^\circ$

 $C_L = 0.440 \angle 70^\circ$

 $R_S = 0.166$

 $R_S = 0.294$

 $R_L = 0.303$

 $R_{L} = 0.440$

Low Noise Amplifier Design

- Last case: low noise amplifier
- Noise limits many systems (radio, wireline, fiber receivers, etc.)
- Performance dominated (usually) by first amplifier in cascade
- Unfortunate fact: best noise performance not obtained at maximum gain. Have to match for either noise *or* gain; a tradeoff is inevitable

Noise in Two-Port Networks

• Noise in amplifiers (as represented by 2-port networks) can be quantified by noise factor:

$$F = \frac{SNR_{in}}{SNR_{out}}$$

- Noise factor is a measure of how much worse the SNR (power) is at the output compared to the input, due to noise added by the network
- Noise factor depends on input termination ($\Gamma_{\rm S}$): $F = F_{\rm min} + \frac{4R_N}{Z_o} \frac{\left|\Gamma_s - \Gamma_{opt}\right|^2}{(1 - \left|\Gamma_s\right|^2)\left|1 + \Gamma_{opt}\right|^2}$

Noise in Two-Port Networks

• Noise factor depends on input termination (Γ_s):

$$F = F_{\min} + \frac{4R_N}{Z_O} \frac{\left|\Gamma_s - \Gamma_{opt}\right|^2}{(1 - \left|\Gamma_s\right|^2)\left|1 + \Gamma_{opt}\right|^2}$$

– $\Gamma_{\rm opt}$, $\rm R_{\rm N},$ $\rm F_{\rm min}$ are "noise parameters" of the device

- Can show (if you are patient) that constant F contours are (gasp) circles in the Γ_s plane: $C_F = \frac{\Gamma_{opt}}{N+1}$
- C_F is center (complex plane), R_F is radius

$$\begin{split} C_F &= \frac{\Gamma_{opt}}{N+1} \\ R_F &= \frac{\sqrt{N(N+1-\left|\Gamma_{opt}\right|^2}}{N+1} \\ N &= \frac{\left|\Gamma_S - \Gamma_{opt}\right|^2}{1-\left|\Gamma_S\right|^2} = \frac{F-F_{\min}}{4R_N/Z_0} \left|1+\Gamma_{opt}\right|^2 \end{split}$$

Low Noise Amplifier Design

- Example 12.5 in Pozar:
 - Design an amplifier with 2 dB noise figure and maximum gain (consistent with this noise level)
 - Plot Noise figure circles
 - Note that noise figure is related to Γ_s ; but gain is too (specified gain: G_s term)
 - So we look at both constant gain and noise figure circles on the same plot:

Low Noise Amplifier Design (cont.)

- Noise figure: NF=2 dB circle
- Several G_s circles 1.0, 1.5, 1.7 dB
- Need to satisfy both: find intersection between NF, highest gain G_s circle

is finalized