Today's Topic: More Lumped-Element Circuit Models

- Recall:
 - We discussed a wire (inductor), resistor (series L, parallel RC) last time
- Plan: round out our "library" of components
 - Capacitor, inductor
 - Examine the impact of parasitic elements on circuit performance
- Move on to distributed circuits

Recap: Circuit Models for Components

- Start with workhorse passives: R, L, C
- Low frequency regime ($\ell < \lambda/100$):
 - Easy: just like EE 20242: V=I*R, V=j ω L*I, I=j ω C*V
 - Nothing new
- "lumped element" models (λ /100< ℓ < λ /10)
 - Phase/delay is important, need to augment our treatment to capture that, but would like it to be simple
 - We'll work up models for components
- Even a wire isn't so simple—not an ideal short
 - Ideal short: phase delay = 0; wire of length λ /10, phase delay ~36°
 - Fix: model as inductance. Empirical formula (very handy...) $L(\mu H) = (0.002\ell) ln(4h/d)$
 - ℓ =length (in cm), d=diameter, h= height above ground plane

Short Wire

$L(\mu H) = (0.002\ell) ln(4h/d)$

- ℓ =length (in cm), d=diameter, h= height above ground plane
- A numerical example:
 - #22 wire (like for a breadboard): d=25.3 mils = 0.0643 cm
 - (aside: microwave people use "mils" a lot; 1 mil=0.001". Yes, inches)
 - h/d in range from 10/100 (inside ln, so not so sensitive)
 - ➤ L=7.4 nH/cm to 12 nH/cm
- Does this matter? nH seems small...
- Put this in a circuit context. Assume h/d=100 (12 nH/cm)
 - At 10 MHz: impedance of wire is j ω L = ~j 1 Ω /cm
 - At 100 MHz: impedance of wire is ~j 10 Ω /cm
 - Depending on what the rest of the circuit looks like, this could be nothing, or it could be a big deal (is it in series with 25Ω ? Or 1000Ω ?
 - Note it can start to matter at quite low frequencies (below 100 MHz)

Other Components: R, L, C

- But first some vocabulary:
 - Impedance, admittance, reactance, susceptance—be sure we're all on the same page
- Z (impedance) = R (resistance) + j X (reactance)
- Y (admittance) = G (conductance) + j B (susceptance)
- Y=1/Z
- Careful:
 - G ≠ 1/R, B ≠ 1/X !
 - Probably obvious if you think it through, but so tempting...
- Resistor: lumped element circuit model

Physical resistor: material (curbon, metal film) R C Sti

Lumped Element R model

• This model is pretty general, for $\ell < \lambda/10$, but is surprisingly complex in response

Can sometimes simplify: If R small ((100 R), RIIC dominated by R If R large (77100 SC) L not so important But these are rough bounds. For into reduce values or if in doubt, use fall model.

Lumped Element R Examples

- Small-ish resistor:
 - 50 Ω
 - C = 1 pF
 - L = 10 nH
 ~5 mm of wire on
 each end)

Real part not changed much, but significant imaginary part

Small Resistor—another look

- Same resistor, same data—but |Z| and angle
- Overall magnitude strongly affected; significant phase

What you see depends on what you look for

Large Resistor

 Real part falls off a cliff, imaginary part has big negative peak at very low frequencies; big resistors don't work well at RF...

Large Resistor – another look

- Mag/angle view often easier to interpret
- |Z| falling from shunt C
- Phase -> 90 °--capacitor

Conclusion: big resistors don't work well at RF...

"Intermediate" R Example

Intermediate resistor: R = 100 Ω, C=1 pF, L=10 nH

- Real part falls more dramatically than small R, less so than large
- Imaginary part comparable to real part at high frequencies

"Intermediate" R – another look

• Intermediate resistor: $R = 100 \Omega$, C=1 pF, L=10 nH

- Note: |Z| can be larger or smaller than DC resistance
- Not captured by either approximation—need full model
- Life is not so simple at RF...

Capacitors

• Real-world capacitors aren't ideal either...

• Performance: C=0.01 μF, L=20 nH (1 cm of wire at each end)

Capacitors

 Note big dip (heads to zero—huge hole on log plot) and abrupt flip in phase

- Below f_s reactance < 0 (like C); above f_s, reactance > 0 (L!)
- Ideal C: X=-1/(ω C) straight-line part below ~4 MHz or so
- This behavior can be a problem or a help—but you have to know it is there!

Inductors

L R-wire resistance m Mm (other use snall wires)

In practice, inductors are often the least ideal of common passives. Physical inductor:

C (amping all the turn - to - turn capacitance into one place $Performance: L = 10 <math>\mu$ H, C=0.5 pF, R = 5 Ω ullet

Inductors

- Let's compare: model vs. ideal L
- Zoom in on low-freq. range
- Plot X for ideal L (X=ωL, L=10 µH) and full model together
- Matches only at very low frequencies
- Big peak (in real and imaginary part; also in |Z|

- Same formula as f_s for capacitor, but very different behavior
- Behavior is lousy if you wanted $X=\omega L$
- Great if you want a DC short and RF "open"—called a "choke"; probably actually more useful...

Impact on Circuits?

- So—does any of this matter much? After all, what we really care about is whether the circuit does what we want or not
- Example: RF low-pass filter

- Simple pi-network filter, easily designed using standard filter synthesis tools in CAD packages (ADS)
- Values computed automatically from filter specifications

Filter Performance

• Frequency response: RF low-pass filter

• Nice roll off, flat passband, what's not to like?

Real Filter Performance

- Include the full model for each component
- Parasitics taken from typical surface-mount values
- Um...things are not so good

Real Filter Performance

• Comparison:

- Passband is narrower than before—if we wanted signals above 1 GHz to get through, um...
- "Second" passband at 5 GHz and above—if we wanted to block signals there, we blew it
- What's wrong?

· · · · · · · · ·	L R R1. L=12.5 nH
	R=0.5 Onm $R=1.1$
p1	<u> </u>
• P1 • • • • •	C_1 C_2
Num=1 · · · · · ·	C=2.5 pF C=2.5 pF Num=2
· · · · · · · · · · · · •	
·····	L2
	·L=1.0·nH+ is a second second second second second 2·L=1.0·nH+ is a second
ין היה היה היי <mark>ר</mark>	.R=
	e la la caractería de la c
	i ana ana ana ana ana ana ana 🚍 ana ana ana

Recap: Lumped Element Models

- Have developed "lumped element" equivalent circuit models for typical R, L, C, plus wire
- Relies on $\ell < \lambda/10$, so not a property only of the component, but also of the signals
- Side note: be very cautious of vendor claims. They aren't lying, but you need to understand what they mean...look at an example:
- <u>http://www.usmicrowaves.com/res/ceramic/alu</u> <u>mina ceramic al2o3 99ghz thin film chip resis</u> <u>tor re1020t10.shtml</u>

Datasheet Details

- Here's the temping part: 99.47 GHz! That should be great for my mm-wave circuit at 94 GHz, right?
- Here's the real thing:

ELECTRICAL CHARACTERISTICS @25°C			
PARAMETER	VALUE	UNITS	
Resistance range	0.1 to 1000000	Ω	
Capacitance (maximum)	0.032	pF	
Power dissipation	10.78	mW/°C	
3dB frequency (R=50Ω)	99.47	GHz	
Temperature Coefficient -55°C to 150°C	75	ppm/°C	
Operating Temperature range	-55 to +150	°C	
Maximum working voltage (R=50Ω)	0.73	V	
Peak voltage at 25°C, 5 sec	1.03	V	
Insulation Resistance @25°C	1e+12	Ω	
RC constant (R=50Ω)	1.6	ps	
Note: Power dissipation is provided for a temperature difference of 1°C between substrate and thermal (solder) joint.			

- 0.032 pF \rightarrow 1/ ω C = 50 Ω at 99.47 GHz. Oh.
- So: at 99.47 GHz, Z≠50 Ω. Z=50 Ω||-j50 Ω. |Z|=35.4 Ω, ang(Z)=-45°. Ooh. At 50 GHz? |Z| = 44.7 Ω, ang(Z)=-27°
- Caveat emptor? Of course...just do the analysis first, cut a purchase order second. They didn't hide anything...

Distributed Circuit Models

- So far: discussed "ideal" and "lumped element" models
 - "ideal": $\ell < \lambda/100$
 - "lumped element": $\lambda/100 < \ell < \lambda/10$
 - last one is "distributed" model: $\ell > \lambda/10$
 - Reminder: there's no fixed "frequency" cutoff—it is always size vs. frequency
- "Distributed": spatially-varying. So we're looking for a model that explicitly includes the geometry
 - Since the components are appreciable in size to wavelength, propagation effects not only important; may even dominate
 - Want our approach to be general, but as simple as possible: inherent trade-off between complexity and accuracy
 - Components: dimensions, materials & properties
 - Interconnects: dimensions, orientation, proximity to other elements, board and metal properties, ...

Distributed Circuit Approaches

- The trade-off between accuracy & complexity leads to multiple approaches
 - Full field theory
 - Transmission line theory
- Full field theory:
 - Since the origin of the deviation from "regular old" circuit design is finite propagation of electromagnetic waves: use Maxwell's equations to explicitly include propagation
 - Approach: use Maxwell's equations, boundary conditions (geometries), material properties
 - Solve for E, H fields everywhere (two vector fields—6 complex components at each position, frequency)
 - Use E, H to find current, voltage vs. position (reduce 6 components to 2 complex scalars)
 - Difficult by hand; time consuming (by computer), requires real effort

Distributed Circuit Approaches

- Transmission line theory
 - Can be viewed as either:
 - Simplification of field theory, or
 - Extension of circuit theory
 - Approach: use intuition to replace "electrically large" elements with "distributed circuit elements" with known electrical characteristics.
 Typically convert 2- or 3-D problem into interconnected 1-D elements
 - Much simpler to compute: by basing analysis on known structures, can directly find V, I vs. position; no need to compute intermediary fields
 - Can often yield intuitive insight into circuit operation, since each element has (usually) relatively simple behavior
 - But: not rigorous. Relies on designer to:
 - Pick the right component to substitute in
 - If coupling between elements is important, designer must add that (or choose a component that has it built in)

Distributed Circuit Approaches

- How are these two approaches related?
 - Full field theory is rigorous, allows evaluation of new structures that are not understood
 - Transmission line theory elements are developed to mimic the E&M behavior of typical structures that have proven useful
 - > Transmission line theory much more efficient, but may mislead
- In practice, not an either/or proposition
- Common approach:
 - Use transmission line approaches to find behavior for "standard" or "simple" parts of a circuit
 - Switch to full-field theory for tricky spots or areas for which the appropriate model isn't clear
 - Once design is finalized, one last full-field analysis of the whole thing to avoid surprises. Much better to find out before the parts have been built...

Full Field Theory Approach

- Maxwell's equations, plus boundary conditions
- A quick recap of E&M:

Maxwell's equations:

$$\nabla \times E = -\frac{\partial}{\partial t}B$$
$$\nabla \times H = \frac{\partial}{\partial t}D + J$$
$$\nabla \cdot B = 0$$
$$\nabla \cdot D = \rho$$

Constituitive relations:

 $B = \mu H$

 $D = \varepsilon E$

Remember what the terms all mean?