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1 Bouncing Ball Example
The modeling and simulation of the bouncing ball example can be found in [1].
One can refer to step-by-step instructions for modeling a bouncing ball as a
Stateflow chart [2].

The dynamics of a bouncing ball can be defined in terms of two continuous
time variables, namely the position and the velocity of the ball, as shown in Fig.
1.

Figure 1: Simulink diagram for the bouncing ball example

In order to model this in Stateflow, you first need to create a chart whose
"Update Method" is "continuous" and which has "Enable zero-crossing detec-
tion" option checked. Once this is done, you can create local variables whose
"Update Method" is "continuous". For this model, we create two local variables
p and v whose update method is "continuous". When you create a "continu-
ous" local variable, you can also define its time-derivative by using the notation
varname|_dot| where varname is the name of the continuous variable. Thus
the variable p_dot refers to the time derivative of the position variable p. You
automatically get access to this variable once you declare p to have "continuous"
update.

Using this convention, the bouncing ball can be modeled using the following
Stateflow chart, as shown in Fig. 2.

Figure 2: Stateflow chart for the bouncing ball example

For most of the time, the ball is just freely falling under the influence of
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gravity. The dynamics in this "mode" are specified in the "during" section of the
"Falling" state. The sudden resets in position and velocity which occurs when
the ball bounces are modeled using a self-transition with a condition action
which performs the state reset.

When this model is simulated, we get the familiar bouncing trajectory of the
ball, as shown in Fig. 3.

Figure 3: Simulation trajectories for the bouncing ball example
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2 Thermostat Example
The simulation is built using Simulink and Stateflow in MATLAB. Fig. 4 shows
the Simulink diagram for this example. The left block (named “Thermostat”)
is a Stateflow block, which simulates the hybrid dynamics of the thermostat. It
has two outputs, i.e. x_output and q. x_output represents the temperature and
q represents the switching mode (0 as “OFF” and 1 as “ON”). The right block
is a scope block, used to visualize the trajectory of temperature and switching
modes.

Figure 4: Simulink diagram for the thermostat example

You can explore the inside of “Thermostat” by double-clicking the Stateflow
block. Fig. 5 shows how to model the thermostat example using the Stateflow
chart. The chart is similar to the graphical representation of its hybrid automa-
ton model. The two rectangular blocks represent two discrete modes, “OFF”
and “ON”. In each mode, the temperature evolves according to a specified dif-
ferential equation.

Figure 5: Stateflow chart for the thermostat example

The initial mode (“OFF”) and temperature value (60) are specified by the
arrow above the “OFF” block. The conditions of transition between “ON”
and “OFF” are specified by the arrows between two modes. The condition
[x<=ml(’rand+69;’)] guarantees that the furnace will be turned on if the tem-
perature is below a random number between 69 and 70. Similarly, the condi-
tion [x>=ml(’rand+70;’)] guarantees that the furnace will be turned off if the
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temperature is above a random number between 70 and 71. Randomness is
introduced because we know the hybrid automaton model for this example is
non-deterministic. The trajectories of temperature and discrete modes should
be different each time the model runs.

When this model is simulated, we can see the trajectories of temperature
and switching mode from the scope block. Fig. 6 shows the trajectories when
the model runs once. Fig. 7 shows the different trajectories when the model
runs another time.

Figure 6: Simulation trajectories when the model runs once

Figure 7: Simulation trajectories when the model runs another time
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3 Water Tanks Example
Fig. 8 shows the Simulink diagram for this example. It consists of three blocks,
which are the Stateflow, XY graph plot and scope blocks. The “two tanks”
Stateflow block simulates the evolution of water levels of the two tanks. It has
three outputs, x1_output, x2_output and q, representing the water level of tank
1, water level of tank 2 and switching mode respectively. The scope and XY
graph blocks are used to visualize the trajectory of water levels and switching
mode.

Figure 8: Simulink diagram for the water tanks example

The inside of “two tanks” State block is shown in Fig. 9. The chart is
similar to the graphical representation of its hybrid automaton model. The two
rectangular blocks represent two discrete modes, “the hose is switched to tank
1” and “the hose is switched to tank 2”. In each mode, the water levels evolve
according to the leaking and inflow rates, specified by the differential equations.

The initial water levels are specified by the arrow above the “q1” block. The
water levels for both ranks are 15 at the beginning. The conditions of transition
between “q1” and “q2” are specified by the arrows between two modes. The
condition [x2<=5] means that the hose will be switched to tank 2 instantaneous
whenever the water level of tank 2 falls down to 5. Similarly, the condition
[x1<=5] guarantees that the hose will be switched to tank 1 instantaneous
whenever the water level of tank 1 falls down to 5.

From Fig. 10 and 11, it can be seen that the water levels are always above 5,
which verifies that the goal of keeping the water levels of the tanks above certain
level is achieved. However, a drawback of this modeling is the occurrence of Zeno
phenomenon. The switching between the two tanks becomes faster and faster,
and the state trajectories will converge to the point (5, 5), which cannot happen
in practice. This is because there are infinite number of switches within a finite
time interval. This phenomenon can be captured by the model and an error
message is given, as in Fig. 12.
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Figure 9: Stateflow chart for the water tanks example

Figure 10: XY plot of the trajectory of water levels
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Figure 11: The trajectory of water levels and switching mode along time

Figure 12: The error message due to Zeno behavior
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4 Stable and Unstable Switched Systems
Fig. 13 shows the Simulink diagram for a switched system with two stable LTI
subsystems

ẋ = A1x, ẋ = A2x

where A1 =
[

−1 −100
10 −1

]
, A2 =

[
−1 10

−100 −1

]
. Notice that both A1 and

A2are are exponentially stable since all eigenvalues of A1 and A2 have negative
real part. In addition, they have a common equilibrium point, which is the
origin. The inside of “two stable systems” State block shows the dynamics of
the two subsystems and the switching law. However, this simple hybrid system
is unstable, since a divergent trajectory can be generated for an initial state
even very close to the equilibrium point. See Fig. 14 for illustrations.

Figure 13: Simulink diagram for a switched system with two stable systems
example
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Figure 14: XY plot of the switched system with stable LTI subsystems

Fig. () shows the Simulink diagram for a switched system with two unstable
LTI subsystems

ẋ = A1x, ẋ = A2x
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Figure 14: XY plot of the switched system with stable LTI subsystems

Fig. () shows the Simulink diagram for a switched system with two unstable
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LTI subsystems
ẋ = A1x, ẋ = A2x

where A1 =
[

1 −100
10 1

]
, A2 =

[
1 10

−100 1

]
. Notice that both A1 and A2

are unstable since both have positive real part eigenvalues. However, the overall
hybrid system is exponentially stable. This is illustrated in Fig. 16 as the state
trajectory approaches the origin as time goes to infinity.

Figure 15: Simulink diagram for a switched system with two unstable systems
example
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Figure 15: Simulink diagram for a switched system with two unstable systems
example
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Figure 16: XY plot of the switched system with unstable LTI subsystems

References
[1] http://www.mathworks.com/help/stateflow/examples/modeling-a-

bouncing-ball.html.

10

Figure 16: XY plot of the switched system with unstable LTI subsystems

10



5 Control of an Inverted Pendulum (can be put
into Chapter 3)

This is a motivating example in [3], originally from [4]Example 3: Control of an Inverted Pendulum (Figures 3 and 4) [2]

angle

u

Figure 3: Inverted pendulum on a cart

u = - u max

= f(x,u)x

z(x) < - u max

= f(x,u)x
u = umax

z(x) > umax

q1q0

= f(x,u)x

|z(x)| < umax

q2

z(x) > umax

z(x) < - u max

z(x) < - u max

|z(x)| < umax

|z(x)| < umax z(x) > umax

angle 

control signal

0

−π
max rightmax left

u = z(x)

stabilize

Figure 4: Hybrid control strategy and results for inverted pendulum

• regulate the inverted pendulum to an upright position using the linear acceleration of
the pivot as control input u

• f(x, u) = [x2, g sin x1 −u cos x1]
T , z(x) = k[x2

2
/2+ g(cos x1 − 1)]sgn(x2 sin x1) where x1

is the pendulum angle and x2 is the angular velocity

• g is the acceleration due to gravity, k > 0

4
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6 Piecewise Quadratic Lyapunov Function (can
be put into 3.4.1)

This is an example in [5] for Piecewise Quadratic Lyapunov Function.

still implies that
xT (AT

i P + PAi)x < 0,∀x 6= 0, (qi, x) ∈ Dom (45)

but xT (AT
i P + PAi)x < 0 does not have to hold for x 6= 0 with (qk, x) ∈ Inv and i 6= k. The

matrix Si may be given as Si = ET
i UiEi, where Ei is given by the representation of H and

Ui = UT
i ∈ R

n×n is chosen to have non-negative elements.

We can also let V depend on the discrete state, ie. V (qi, x) = xT Pix for (qi, x) ∈ Inv. We
choose Pi = F T

i MFi, where Fi is given by the representation of H, and M = MT ∈ R
n×n is

to be chosen.

Theorem 9 (Piecewise Quadratic Lyapunov Function) H = (S, Init, f, Dom, R) with
equilibrium xe = 0. Assume that for all i:

• f(qi, x) = Aix,Ai ∈ R
n×n

• Dom = ∪i{qi} × {x ∈ R
n : Ei1x ≥ 0, . . . , Einx ≥ 0}

• Init ⊆ Dom

• for all x ∈ R
n

|R(qi, x)| =

{

1 if (qi, x) ∈ ∂Dom
0 otherwise

(46)

such that
(qk, x

′) ∈ R(qi, x) ⇒ Fkx = Fix, qk 6= qi, x
′ = x (47)

where Fk, Fi ∈ R
n×n.

Furthermore, assume that for all χ ∈ E∞

H , τ∞(χ) = ∞. Then, if there exists Ui = UT
i ,

Wi = W T
i , and M = MT such that Pi = F T

i MFi satisfies:

AT
i Pi + PiAi + ET

i UiEi < 0 (48)

Pi − ET
i WiEi > 0 (49)

where Ui,Wi are non-negative, then xe = 0 is asymptotically stable.

Example 3: Consider the hybrid automaton of Figure 11 with

A1 = A3 =

[

−0.1 1
−5 −0.1

]

, A2 = A4 =

[

−0.1 5
−1 −0.1

]

(50)

Here, we may choose

E1 = −E3 =

[

−1 1
−1 −1

]

, E2 = −E4 =

[

−1 1
1 1

]

(51)

and

Fi =

[

Ei

I

]

∀i ∈ {1, 2, 3, 4} (52)
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Figure 11: Example 3

The eigenvalues of Ai are −1/10 ±
√

5i. The evolution of the continuous state is shown in
Figure 12. We can use a Lyapunov function given by:

P1 = P3 =

[

5 0
0 1

]

, P2 = P4 =

[

1 0
0 5

]

(53)

to prove asymptotic stability of the hybrid automaton.

x ’ = ((x − y>=0) (x + y<=0) + (x − y<0) (x + y>0)) ( − 0.1 x + y) + ((x − y>=0) (x + y>=0) + (x − y<0) (x + y<0)) ( − 0.1 x 
y ’ = ((x − y>=0) (x + y<=0) + (x − y<0) (x + y>0)) ( − 5 x − 0.1 y) + ((x − y>=0) (x + y>=0) + (x − y<0) (x + y<0)) ( − x − 
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Figure 12: Example 3
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7 Semi-automatic transmission [10] (can be put
into Chapter 2)

2.5. Gear Shift Control

The gear shift example describes a control design problem where both the continuous and the
discrete controls need to be determined. Figure 6 shows a model of a car with a gear box
having four gears. The longitudinal position of the car along the road is denoted by x1 and
its velocity by x2 (lateral dynamics are ignored). The model has two control signals: the gear
denoted gear ∈ {1, . . . , 4} and the throttle position denoted u ∈ [umin, umax]. These may both
be considered as inputs to the system, while the position and the velocity are outputs. The
gear shift is necessary because little power can be generated by the engine at very low or very
high engine speed. The function αi represents the efficiency of gear i.

PSfrag replacements

ẋ1 = x2

ẋ2 = α1(x2)u
gear = 1

ẋ1 = x2

ẋ2 = α2(x2)u
gear = 2

ẋ1 = x2

ẋ2 = α3(x2)u
gear = 3

ẋ1 = x2

ẋ2 = α4(x2)u
gear = 4

gear = 2 gear = 3 gear = 4

gear = 3gear = 2gear = 1

Figure 6: A hybrid system modeling a car with four gears.

Several interesting control problems can be posed for this simple car model, including the
following: What is the optimal control strategy to drive from x = (a, 0) to (b, 0) in minimum
time? The problem is non-trivial if the reasonable assumption is included that each gear
shift takes a certain amount of time. The optimal controller, which can be modeled as a hybrid
system, may be derived using the theory of optimal control of hybrid systems [EOLSS,6.43.28.5].

2.6. Swing-Up of Inverted Pendulum

The inverted pendulum (Figure 7) is a popular system in teaching laboratories for illustrating
control problems present in various applications such as thrust-vectored rocket control and
bipedal walking. Here we discuss a hybrid control strategy for swinging up a pendulum from a
downward to an upright position and then stabilizing it.

Figure 7: Pendulum on a cart.

Let x1 be the angle between the vertical and the pendulum, x2 the angular velocity and u ∈
[−umax, umax] the acceleration of the pivot, which we consider as the control signal. Then, the
dynamics after normalization is given by

ẋ1 = x2

ẋ2 = g sin x1 − u cos x1,
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8 Train Gate Example [6, 7] (can be put into
5.4)

31

The train gate example

Safety specification : If train is within 10 meters of the crossing, 
then the gate should be completely closed.   

Liveness specification : Keep gate open as much as possible.

x

approach exit

θ

lower

raise

Controller

Controller || Gate || Train  System 

32

Train model

0x 

nearfar past

2000 x 

0x 

40x 50-
.



1000x  -100x 

1000x 

30x 50-
.

 30x 50-
.

approach

)[2000,x'  010x 

exit
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33

Gate model

90θ 

openraising

90θ 

9θ
.



lowering closed

0θ
.



90θ 

lower

9θ
.



0θ 

0θ
.



0θ 

90θ 

raise

lowerraise

0θ 

raise

lowerlower

raise

34

Controller model

idletolower Going raise to Going

true

0:y 

dy 

1y
.


approach

true

exit
1y

.



raise

0:y 

lower

1y
.



dy 

0:y 

approach

0:y 

exit
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35
Synchronized transitions

idletolower Going raise to Going

true

0:y 

dy 

1y
.

approach

true

exit 1y
.



raise

0:y 

lower

1y
.



dy 

0:y 

approach

0:y 

exit

0x 

nearfar past

2000 x 

0x 

40x 50-
.



1000x  -100x 

1000x 

30x 50-
.

 30x 50-
.

approach

)[2000,x'  010x 

exit

36

Verifying the controller

Safety specification : Can we avoid the set                                 ?

Parametric verification : 

x

approach exit

θ

lower

raise

Controller

Controller || Gate || Train  System 

 10)x(-10  0θ 

5

49
d   if   YES 
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9 Optimization control of two tank system [8]
(can be put into 4.2)

18



19



20



10 Hybrid supervisory control[9] (4 examples in
total, can be put into 6.3)

event, there is only one possible subsequent state. As we have
shown, the DES plant model is described, in general, by a
nondeterministic finite automaton. Here, our assumption is
made with respect to the plant (output) symbols and is sim-
ilar to the concept of observability [51].

This is a realistic assumption for practical applications of
hybrid systems. The plant symbols represent the measure-
ments from the continuous plant. Each plant symbol cor-
responds to a hypersurface and to a direction of crossing
that hypersurface, and it is issued when the continuous state
crosses this hypersurface. If the current state is known and
a plant symbol is detected, then we can determine the suc-
cessor state uniquely. Note that this assumption is not incon-
sistent with nondeterminism in the DES plant model, since
in a nondeterministic DES plant model, the successor state
cannot be determined uniquely by the current state and the
control symbol applied by the controller.

Since the current state can be determined uniquely from
the previous state and plant symbol, for any initial state
and sequence of plant symbolsproduced by the DES, there
exists a unique sequence of DES plant statescapable of
producing the sequence. This assumption implies the exis-
tence of a mapping, , which takes an ini-
tial state together with a sequence of plant symbols and maps
them to the corresponding sequence of states. Theth state in
the sequence can also be written as , where

was the initial state. The mapping is needed
for the following definition for controllable languages, which
applies to the DES plant.

A language is controllablewith respect to a given DES
plant if , there exists such that

(92)

where .
This definition requires that for every prefix of the desired

language , there exists a control, which will enable only
symbols that will cause the string to remain in. This defi-
nition implies the next technical result shown in [65].

Proposition 2: If the language is controllable, then a
controller can be designed that will restrict the given DES
plant to the language .

Since the concept of controllability for the language gen-
erated by the DES plant model can be seen as an extension
of the Ramadge–Wonham framework to the hybrid system
case, the conditions in (92) reduce to those of (88) under
appropriate restrictions. These restrictions basically are that
the plant symbols fall into a controllable/uncontrollable di-
chotomy and a control policy exists to disable any combina-
tion of controllable plant symbols.

For hybrid control systems, the supremal controllable sub-
language of the DES plant can be found by a similar iterative
scheme:

(93)

such that (94)

(95)

For regular languages, it can be shown that the above it-
eration also converges in finite steps and thatis regular.
From (94), it follows that for any , there exists a con-
trol symbol such that ; there-
fore, the language is controllable. This result yields the
following proposition.

Proposition 3: For a DES plant and language, is
controllable and contains all controllable sublanguages of.

The supremal controllable sublanguage is regular and can
be realized with a supervisor described by a finite automaton
as illustrated by the following examples. Related work on
the supremal controllable sublanguage in the discrete-event
model of nondeterministic hybrid control systems can be
found in [69].

1) Example—Double Integrator:The system consists of
a double integrator plant, which is controlled by a discrete
event system. Consider the double integrator example with
the DES plant shown in Fig. 10. Let the initial state be

. Then the language generated by this automaton is
. If we want to drive the plant in clockwise

circles, then the desired language is . In this
example, it can be shown that the languageis controllable
because it satisfies (92). This can also be seen by observing
Fig. 10. If the current state is either or , then the system
can evolve in a clockwise direction. If the current state is,
then the plant symbol can be disabled by selecting the
control symbol . Similarly, for , can be disabled by
selecting . Therefore, according to Proposition 2, a con-
troller can be designed to achieve the stated control goal. The
controller for this example is shown in Fig. 19, and its output
function is as follows:

(96)

(97)

2) Example—More Complex DES Plant Model:This ex-
ample has a richer behavior and will illustrate the genera-
tion of a supremal controllable sublanguage as well as the
design of a controller. We start immediately with the DES
plant model shown in Fig. 20.

The language generated by this DES is , where

(98)

A problem that appears very often in hybrid system is to
supervise the system so that it will not enter an unsafe re-
gion. Suppose we want to control the DES so that it never
enters state . We simply remove the transitions to and
then compute the resulting language. This desired language
is therefore

(99)

In this example, the language is not controllable. This can
be seen by considering the string , for which
there exists no that will prevent the DES plant from de-
viating from by generating and entering state . Since

KOUTSOUKOSet al.: SUPERVISORY CONTROL OF HYBRID SYSTEMS 1043
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Fig. 19. Controller for the double integrator.

Fig. 20. DES plant model.

is not controllable, we find the supremal controllable sub-
language of as defined in (95). The supremal controllable
sublanguage is

(100)

Obtaining a DES controller once the supremal controllable
sublanguage has been found is straightforward. The con-
troller is a DES whose language is given by . Since the
language is regular, the supervisor is implemented by
a finite automaton that generates the language. Details
regarding the equivalence between finite automata and
regular languages can be found in [26]. The output of the
controller in each state is the controller symbol, which
enables only transitions that are found in the controller. The
existence of such a controller symbol is guaranteed by the
fact that is controllable. For this example, the controller
is shown in Fig. 21 and its output functionis as follows:

(101)

(102)

3) Example—Distillation Column:This example uses
the model of a two-product distillation column with a single
feed. A complete description of the nonlinear model can
be found in [44]. Here, a condensed description is given to
show the source of the DES plant model and provide insight
into the physical meaning of the states and events.

Fig. 22 shows the distillation column. represents the
feed flow into the column, is the flow of bottom product
out of the column, is the mole fraction of the light com-
pound in the bottom product, is the flow of distillate out of
the column, and is the mole fraction of light compound in

Fig. 21. DES controller.

the distillate. The boilup flow is denoted byand the reflux
flow by . All units are in kmol’s and minutes. The column
can be controlled by setting the feed, boilup, and reflux. In
general, the goal is to have a high level of light compound in
the distillate and a low level of light compound in
the bottom product .

There are 40 trays stacked vertically in the column. The
state consists of the mole fractions of light compound in the
liquid of each tray. The states evolve according to the fol-
lowing equations:

where and . Trays 21 and 22 are
special because they are below and above the feed location.
Tray 41 is actually the condenser. The quantitiesare the
mole fractions of light compound in the vapor, given by

where is relative volatility. Other quantities of in-
terest are

and the outputs are

To obtain a hybrid control system, appropriate control
policies and plant symbols must be chosen. Their selection
is based on our knowledge of the control goals and the
design constraints, and it will determine the interface. Let
the control policies be

These input values correspond to, , , and . Next,
plant symbols are defined based on events as follows:

1044 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000
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Fig. 22. Distillation column.

Fig. 23. DES plant for the distillation column.

falls below 2;
exceeds 2;

falls below 0.13;
exceeds 0.13;
falls below 0.12;
exceeds 0.12;
falls below 0.08;
exceeds 0.08;
falls below 0.84;
exceeds 0.84;
falls below 0.85;
exceeds 0.85;
falls below 0.95;
exceeds 0.95.

We would like to keep below 0.13, above 0.95,
and the feed at 2. These conditions correspond to increased
production of high-purity products. Simulations reveal that
given the available controls and events, this is not possible;
that is, even if the initial state is in this region, no available
control policy will cause it to remain there. It is possible to
drive the system close to this point, however. Specifically, our

control goal shall be twofold: first, to drive the system near
the ideal point, and second, to avoid having a high feed rate
(2 kmol/min) when the system is not near the ideal point.

The distillation column is an example of a rather com-
plex hybrid system. The generator was designed to recog-
nize 14 different plant events. This leads to 32 distinct re-
gions in the state space, and therefore, there are 32 DES plant
states. Fig. 23 shows the DES plant model. The two states la-
beled “ ” correspond to the desired operating regions of the
system. This DES plant model was extracted by automating
the testing process and implementing it on a computer.

A controller was obtained by automating the procedure
for finding the supremal controllable sublanguage. The con-
troller is shown in Fig. 24. This controller drives the plant
from the initial state to a loop containing the two good states.
Note that in this figure, the states of the controller have been
labeled with the controller symbol that is generated by that
state.

4) Example—Robotic Manufacturing System:An ex-
ample of a free floating robotic vehicle with two articulated
arms is presented. The robotic arms shown in Fig. 25 are
required to obtain components from aparts binand move
these components towork areaswhere assembly operations
are to be performed. The tasks of fetching the workpiece,
transporting it to the work area, and then returning to
the parts bin to fetch another workpiece are performed
repeatedly. The introduction of a shared resource generates
a mutual exclusionconstraint on the system. This example
is particularly interesting because of the free-floating base,
which makes the dynamics quite challenging. Similar prob-
lems arise in control and coordination of modern complex
engineering applications such as autonomous vehicles and
multibatch chemical processes. The robotic manufacturing
example described here has been used in [37] to illustrate
various concepts in hybrid system theory. A simplified
version of the system without the free rotating table has
been used in [29] and [28] to illustrate regulatory control of
hybrid systems based on discrete abstractions.

The motions of the arms are described by the following
ordinary differential equations:

(103)

(104)

where and are the angular positions of arm 1 and arm 2
with respect to the body axis of the robot. For this example,
the control law is a proportional feedback law with gainand
with reference inputs and . These reference inputs rep-
resent commands that direct the arm to move to the parts bin
or work area. The movement of the arms will induce a body
rotation so that the total angular momentum of the system is
conserved. Let and denote the
inertial angles of the robot arms 1 and 2, respectively. The
body angle with respect to the inertial frame must satisfy

(105)

where and are the moments of inertia for the body and
arms, respectively.
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Fig. 24. Sample controller for distillation column.

Fig. 25. Robotic manufacturing system on a free rotating platform.

The available control policies for theth robotic arm are
defined as follows:

drive arm to parts bin;
drive arm to work area;
stop arm .

Note that continuous controllers that guarantee that each
command signal is executed in a suitable manner may be
necessary. As discussed in Section II, it is assumed that
these continuous controllers are included in the description
of the plant. Next, plant symbols are defined based on events
as follows:

Arm 1 approaches the parts bin;
Arm 1 enters the parts bin;

Arm 1 exits the parts bin;
Arm 1 leaves the parts bin;
Arm 2 approaches the parts bin;
Arm 2 enters the parts bin;
Arm 2 exits the parts bin;
Arm 2 leaves the parts bin.

The generator was designed to recognize eight different
plant events. This leads to nine different regions in the state
space, and therefore, the DES plant model has nine states as
shown in Fig. 26.

We want to control the robotic manufacturing system so
that it never enters the critical section. Therefore, the control
requirement for the DES plant is that it never enters state.
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Fig. 26. DES plant model for the free-floating robotic system.

Fig. 27. DES controller for the free-floating robotic system.

The controller shown in Fig. 27 was obtained based on the
supremal controllable sublanguage and does not allow the
robotic arms to enter the critical section at the same time.

VI. CONCLUSIONS

In this paper, the supervisory control of hybrid systems
has been introduced and discussed at length. Discrete ab-
stractions that are represented by a DES plant model have
been used to approximate the continuous plant. In general,
the abstracting DES models are nondeterministic. Proper-
ties of the DES plant model to be a valid representation of
the continuous plant have been presented. The emphasis has
been put on the design of the interface between the contin-
uous plant and the discrete event controller. A methodology
to design the partition of the continuous state space based
on the natural invariants of the plant has been briefly out-
lined. The robustness problem of the discrete transitions sub-

ject to small variations of the continuous system has also
been addressed. Note that robustness to parameter variation
is still an open issue in supervisory control of hybrid sys-
tems. An alternative methodology to the usual quantization
technique of digital control based on the interface of hybrid
control systems has been presented. The types of problems
that have been addressed are those with control specifica-
tions that can be described by formal languages accepted by
the DES plant model. The supervisory control problem for
hybrid systems has been formulated, and algorithms for su-
pervisory design based on the controllability of the specifi-
cation language have been presented. Although the approach
in this paper was based on a continuous-time model of the
plant, similar results have been obtained using discrete-time
systems [65], [59]. It should be noted that our coverage is
primarily of a tutorial nature, and so many technical details
have been just briefly outlined or simply omitted; the reader
should consult the references for further details.

In this paper, we focused on the case when finite automata
are used to describe both the plant and the controller. Hy-
brid control approaches based on Petri nets have been re-
ported in the literature (see, e.g., the survey paper [8]). A
similar approach to the one described in this paper using Petri
nets, which may be computationally more efficient for large
concurrent systems, has been reported in [23] and [31]. This
approach addresses a particular class of supervisory control
problems described by convex constraints on the marking of
the Petri nets [43].
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