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Abstract

In this paper, we study the output synchronization problem of multi-agent systems with event-driven commu-
nication, in which the data transmissions among neighboring agents are event-based rather than pre-scheduled
periodically. We propose a set-up for the coupled agents to achieve output synchronization with event-driven
communication in the presence of constant communication delays by using scattering transformation. Thus, whenever
the agent satisfies its triggering condition, a scattering variable which contains the current output information of
the agent will be sent to its corresponding neighbors, and the neighbors will extract reference information from
its received scattering variables for its own control action update. Quantization effects on output synchronization
with event-driven communication have also been studied. The result presented in the current paper is an important
extension of applying event-driven communication to control of multi-agent systems, especially when it is difficult to
derive a common upper bound on the admissible network induced delays based on the event-triggering condition or
when the network induced delays between coupled agents are larger than the inter-event time implicitly determined
by the event triggering condition.

Index Terms

output synchronization, event-driven communication, quantization effects, communication delay, passivity, graph
theory, control of multi-agent systems

[. INTRODUCTION

Recently, several researchers have suggested the idea of event-based control as a promising technique to reduce
communication and computation load for the purpose of control in many control applications. In a typical event-
based implementation, the control signals are kept constant until the violation of a “event triggering condition”
on certain signals triggers the re-computation of the control actions. The possibility of reducing the number of
re-computations, and thus of transmissions, while guaranteeing desired levels of performance makes event-based
control very appealing in networked control systems(NCSs). A comparison of time-driven and event-driven control
for stochastic systems favoring the latter can be found in [18]; a deterministic event-triggered strategy was introduced
in [19]; similar results on deterministic self-triggered feedback control have been reported in [20], [21], [22]; an
event-triggered real-time scheduling approach for stabilization of passive and output feedback passive (OFP) systems
has been proposed in [25].

On the other hand, control of multi-agent systems is facilitated by recent technological advances on computing
and communication resources. Several results concerning multi-agent cooperative control have appeared in recent
literature involving agreement or consensus algorithms [5], [6], [7] and [10], formation control and group coordina-
tion [8], [9], and distributed estimation [11], to name a few. Important aspects in the implementation of distributed
algorithms for control of multi-agent systems are communication transmissions and actuation update schemes.
Most of the work in the literature assumes that the execution of the distributed controller and the scheduling
of the communication transmission are implemented in a conservative way, where a tight bound is selected as
the maximal allowable inter-transmission time to guarantee the performance of the interconnected systems for all
possible operating points. This traditional methodology may lead to inefficient implementation of distributed control
algorithms in terms of processor usage or available communication bandwidth. Thus, event-driven communication
in control of multi-agent systems is of interest because of the potential of reducing communication load and
implementation cost. While most of the work on event-triggered control focus on sensor-actuator NCSs, there is
not many work on applying event-triggered control in control of multi-agent systems, although a recent work on
event-triggered control for consensus problem has been reported in [12].



There are two important problems among others needed to be addressed by applying event-driven communication
in control of multi-agent systems. First, triggering condition which assures that the coupled agents to achieve a
mutual objective (as requested by many applications for control of multi-agent systems) has to be derived. The
implementation of the triggering condition should only requires the local information of the corresponding agent
and is easy to check. The second problem is that the proposed event-driven communication strategy has to be
embedded with some sort of “robustness” with respect to the imperfections of the communication networks. We
try to address event-driven communication for control of multi-agent systems by focusing on the two problems just
mentioned.

In this paper, output synchronization problem of multi-agent systems with event-driven communication has
been studied. We assume all the agents in the network are lossless and we propose a set-up to achieve output
synchronization of coupled agents with event-driven communication in the presence of arbitrary constant network
induced delays. Triggering condition to achieve output synchronization is derived based on the rectified scattering
transformation (see [14], [15], [16] for details on scattering transformation) applied in our proposed set-up. Whenever
the agent satisfies its triggering condition, a scattering variable which contains the current output information of
the agent will be sent to its corresponding neighbors, and the neighbors will extract reference information from
its received scattering variables for its own control action update. The proposed set-up in the current paper is an
important extension of applying event-driven communication to control of multi-agent systems, especially when
it is difficult to derive a common upper bound on the admissible network induced delays based on the triggering
condition or when the network induced delays between coupled agents are larger than the inter-event time implicitly
determined by the event-triggering condition.

Quantization effects on output synchronization of multi-agent system with event-driven communication has also
been investigated in this paper. We first study the quantization effects when there are no data transmission delays
in the networks. Event-driven consensus problem with quantization is singled out as a case study. Then we further
study the quantization effects when there are arbitrary constant data transmission delays in the networks and we
have shown that with the event-driven communication set-up applied in this paper, output synchronization error of
the studied multi-agent system is essentially bounded by the quantization errors of the signals transmitted in the
networks. The rest of this paper is organized as follows: we first introduce some background on passive system and
graph theory in section II; the problem is stated in section III; we first derive the triggering condition for output
synchronization without considering network induced delays in section IV, and we also obtain an analysis of the
inter-event time based on the triggering condition, which is provided in section V; in section VI, the continuous
consensus problem is re-formulated with event-driven communication as a case study; the results for achieving
output synchronization with event-driven communication in the presence of constant network induced delays are
presented in section VII; quantization effect on output synchronization is studied in section VIII and section X;
finally, the conclusion in provided in section XI.

II. BACKGROUND MATERIAL

A. Passivity
Consider the following dynamic system which can be used to describe both linear and nonlinear systems:
= f(x,u
" fz,u) n
y = h(z)

where c e X CR", u € UCR™ and y € Y C R™ are the state, input and output variables, respectively, and X,
U and Y are the state, input and output spaces, respectively. The representation ¢(t, to, o, u) is used to denote the
state at time ¢ reached from the initial state zg at ¢o.

Definition 1(supply rate)[4]: The supply rate w(t) = w(u(t),y(t)) is a real valued function defined on U x Y,
such that for any u(t) € U and z¢ € X and y(t) = h(o(t, to, xo,u)), w(t) satisfies

/tl lw(r)|dr < oo, @)

t()

Definition 2(Dissipative System)[4]: System H with supply rate w(¢) is said to be dissipative if there exists a
nonnegative real function V(z) : X — RT (R™ is the set of nonnegative real numbers), called the storage function,



such that, for all ¢ > t; > 0, 29 € X and v € U,

Ve = V(o) < / " () 3)

to

where x1 = ¢(t1, to, zo, u).
Definition 3(Passive System)[4]: System H is said to be passive if there exists a storage function V' (x) such that

t1
V() — Vi) < / w(r)Ty(r)dr, @
to
if V(z) is C!, then we have
V(x) < u(t)Ty(t), vt > 0. (5)

One can see that passive system is a special case of dissipative system with supply rate w(t) = u(t)Ty(t). If
V(zy) —Vi(xg) = ftf)l u(T)Ty(7)dr, then we say the system is lossless.

B. Graph Theory

Information exchange between agents can be modeled as a graph. In the following, we give some basic termi-
nologies and definitions from graph theory [23].

We consider finite weighted directed graphs G := (V, E) with no self-loops and adjacency matrix A, where V
denotes the set of all vertices, E denotes the set of all edges, and A := [a;;] with a;; > 0 if there is a directed
edge from vertex ¢ into vertex j, and a;; = 0 otherwise. The in-degree and out-degree of vertex k are given by
di(k) = >_; aji and do(k) = 3_; ag; respectively.

The Laplacian matrix of a directed graph is defined as L = D — A, where D is the diagonal matrix of vertex
out-degrees.

Fig. 1: example on graph Laplacian

Example 1: Consider a graph as shown in Fig.1, where we define

Q)

| a, 1if vertex ¢ sends information to vertex j;
% =) 0, otherwise
, .

and a > 0 represents the coupling strength between coupled agents. Then we can get the adjacency matrix A and
the degree matrix D

0 a a a 3a. 0 0 O
0 0 a O 0 a 0 O
A= 0 00 0] D= 0 00 0|° )
0 00O 0 00O
and the graph Laplacian is given by
3¢ —a —a —a
0 a —a 0
L= o 0 0 0] )
0 0 0 O

Definition 4(strongly connected graph)[23]: A directed graph is strongly connected if for any pair of distinct
vertices v; and v, there is a directed path from v; to v;.



Definition 5(balanced graph)[23]: A vertex is balanced if its in-degree is equal to its out-degree. A directed graph
is balanced if every vertex is balanced.

Definition 6(weakly connected)[10]: A path of length r in a directed graph is a sequence vy, ...,v, of r +1
distinct vertices such that for every ¢ € {0,...,r — 1}, (v;,v441) is an edge. A weak path is a sequence vy, ..., Uy
of 7+ 1 distinct vertices such that for each ¢ € {0,...,r — 1}, either (v, v;41) or (viy1,v;) is an edge. A directed
graph is weakly connected if any two vertices can be joined by a weak path.

Lemma 1 [23]: Let G be a directed graph and suppose it is balanced. Then G is strongly connected if and only
if it is weakly connected.

III. PROBLEM STATEMENT AND ASSUMPTIONS

The evolution of multi-agent NCSs depends fundamentally on their interconnection topology. We list below several
assumptions regarding the interconnection topology that we will make in the sequel. The specific assumption(s)
used will be made clear in the statement of a given result.

Al. The topology of the underlying communication graph is weakly connected point-wise in time and form a
directed balanced graph with respect to information exchange.
A2. The topology of the underlying communication graph is weakly connected point-wise in time, bidirectional
and balanced.
Definition 7(Output Synchronization)[10]: Suppose we have a network of N agents, the agents are said to output
synchronize if

yj(t) —vi(t) = 0ast — oo, Vi,j =1,...,N.

It has been shown in [10] that for a group of N networked passive systems, suppose that the agents are coupled
together using the control
JEN;

where K is a positive constant and A; denotes the set of agents transmitting their outputs to the i*" agent. Then
under assumption Al, the networked passive systems are globally stable and the agents output synchronize.

The output synchronization results in [10] require that each agent communicates with its neighboring agents
continuously. In this paper, we reformulate the above control problem and take event-driven communication into
consideration. Consider a networked control system which consists of N lossless agents each denoted by H;, for
1=1,2,...,N. Agent H; transmits its current output information to its corresponding neighbors Z; (Z; denotes
the set of agents receiving output information from H;) whenever its event triggering condition is satisfied. The
time sequence of data transmission (event time) for H; is denoted by {tj,}, for £ = 0,1,2,.... We summarize the
problem we try to solve in this paper as follows: What is the triggering condition and the control law for the coupled
agents to achieve output synchronization with event-driven communication? How frequent the data transmission is
under the triggering condition? Moreover(which should be more interesting), when the data transmission between
each coupled agents is subject to communication delay, and the delay could be much larger than the inter-event
time obtained based on the triggering condition for the no delay case, can we still achieve output synchronization
with event-driven communication? Further more, if we also consider quantization of the transmitted signals in the
networks, what is the quantization effect on output synchronization of the multi-agent system with event-driven
communication?

IV. TRIGGERING CONDITION FOR OUTPUT SYNCHRONIZATION WITHOUT COMMUNICATION DELAYS

Assume that the control input to agent H; is given by

wit) = Y alfk, — Gr,), for t € [ty ty,11), i=1,2,...,N (10)
JEN;
where a is a positive constant represents the coupling between agent H; and agent H; as defined in the adjacency
matrix of the underlying communication graph; 7, represents the latest output information received by H; from
Hj by the time ¢, for j € N Uk, = vi(te,) represénts the latest transmitted output information of H; at the latest
event time ty,.



We first assume there is no data transmission delay in the communication network and the topology of the
underlying communication graph is fixed. The triggering condition for output synchronization is shown in the
theorem below.

Theorem 1. Consider a network of N lossless agents with control (10). Under assumption Al, if each agent H;
transmits its current output information to its neighbors whenever the following triggering condition is satisfied

515w, I, — Tl
Jes(o)ly = i WO Telh )
137 e Wk, = k) ll2”

where 01 € (0,0.5], €;(t) = vi(t) — Yk,, for t € [tg,,tk,+1), ki = 0,1,2,..., then the agents output synchronize
asymptotically.

Proof: Since each agent is lossless, we have V;(t) = ul (t)y;(t), V¢t > 0, where Vj(t) is the storage function
for agent H;. Consider a storage function for the multi-agent system as V = Zf\i 1 Vi, then we have

V= ZV Zuyz ZZ (T, — )" vi

. (12)
ZZ a(@, — Ur.)" (€ +Jr,), VL= 0
i=1 jeN;
and we can further get
N
V=>">" a@ — ) €z+zz Uk, — k) U
i=1 jEN; i=1
NJ JEN; (13)
:Z a(Uk, = Yk,) ezJFZZaykyk_ZZaykyk
i=1 jEN; i=1 jEN; =1 jEN;

As the information exchange graph is balanced, we have

n N

1

T~ PPN ~

E E YUk = 5 E E Uk + 5 E E yj, (14)
i=1 jEN; i=1 jEN; i=1 jeN;

and therefore it follows that

N
V= ZZ Yk, — Uk,) 61‘—522 U, = Uk,)" Uk, — Uk,
=1 N

i=1 ]GN (15)
<aZ|lezH 1> @, = well, - 22 > N9 = i Il
JEN; i=1 jeN;
so if 5 G I
. ’ — ki
leillz < i L) (16)
2013 5en: Uk, — Yk ll2
then V < 0. Note that the triggering condition (11) actually guarantees that (16) is satisfied.
Moreover, since we can rewrite V' as
' N N .
V=S a@ —0k) vi=Y_ > allyy—e) — (i — )] i
i=1 jEN; i=1 jeN;
al T
=Y "> ally—v) —(e;—e)] wi (17)
=1 jEN;
N N
_ Z a(y; Z Z = -YTLY + ETLY,
i=1 jeN; i=1 jeN;



where Y = [yT,yd,... ,y}f,]T is the output vector of the multi-agent system. Thus based on Lasalle’s Invariance
Principle [1] and strong connectivity of the underlying communication graph, V = —YTLY + ETLY < 0 implies

output synchronization of those coupled agents. [ |

V. ANALYSIS OF INTER-EVENT TIME BASED ON THE TRIGGERING CONDITION

The triggering condition shown in Theorem 1 explicitly determines the time instants at which each agent should
transmit its current output information to its neighbors in order to achieve output synchronization. Another problem
needs to be answered is how often the event-driven data transmission is needed under the derived triggering
condition? In general, it is not easy to get a common lower bound on the inter-event time since we are dealing
with heterogeneous multi-agent systems, and in many situations, zeno inter-event time may not be avoided unless
a specified lower bound on the inter-event time is imposed. In the following proposition, we give an analysis of
the inter-event time based on the triggering condition provided in Theorem 1.

Proposition 1. Consider the dynamics of H; given by

H o = fi(wi, u;) (18)
yi = hi(w;),
let the following assumptions be satisfied
1) fi(xs,u;) : R™ x R™ — R™ is locally Lipschitz continuous in z; on a compact set S, C R™ with Lipschitz
constant L ;
2) | fi(zi,u;) — fi(2i,0)||2 < Ly, ||uil|2 for all z; € S,, with some nonnegative constant L,,,;
3) hi(z;) : R™ — R™ belongs to a sector (K1, Kj2), with Kja! x; < ol hi(x;) < Kppa! xi, where K1 € R,
Ky eRand 0 < Kj1 Kjp < o0;
4) ||g% 5 < Vis where 0 < v; < o0;
then with the control (10), the inter-event time [t, 11 — tx,| implicitly determined by the triggering condition (11)
is strictly positive.
Proof: Since e;(t) = y;(t) — yg, for t € [ty,, tk,+1), we can get for ¢ € [ty,, tk,+1)

d _ _ .
g leillz = llesllz = l1gill2 = llAi(2:)ll2

oh; oh;
Haxifz(:ﬁ )JF oz [f ((E uz) fz(x )] 9 (19)
= Y;iLg, «%”2 + %iLu, || Z a(Yk, — @k)”g
JEN;
Since h;(x;) belongs to the sector (K1, K;2), one can verify that ||z;||2 < (;||yill2, where
1 1
C:max{—,—}. 20
' (K| Kol G0
Therefore, we have
d PO
Sleille < %iLaGillvill2 + %iLull Y oG, = Ti)ll2
JEN;
= YiLz,Gillei + Tell2 + viLull Y al@k, — Gkl Q1)
JEN;
< YiLe Gilleilla + YiLa, Gillil2 + YiLull D al@r, — Tk ll2;
JEN;
so the evolution of ||e;||2 during the time interval [t,, ¢, +1) is bounded by the solution to
d - .
—O(t) = %L, Gio(t) + YL Gill Gl + %Ll Y 0@, = T2 (22)

JEN;



131 ZJEN,‘, ”/y\]ﬂ _/y\kj Hg
H Zje/\f’i (@ky _QM)HQ

with initial condition ¢(¢,) = 0. Thus the time for ||e;||2 to evolve from 0 to is lower bounded

_ 515 sen ks =T, 112
by the solution to ¢(ty, + 7%,) = T 2y [0 O llz -y

= ~—— . Let
” z.jej\/’i (ykj _yki)HQ

013 jen: 10k, — Ui, 13
Oo = = = ) (23)
13 5en Wk, — Ukl
then we can get I
1 xvgiao
Thi = In (1 + = : — ) (24)
YiLz, Gi L, GillUk, 12 + L | 3= jen, @k, — Ukl

So before agent H; output synchronizes with its neighbors, we will have 7, > 0. Moreover, when H; output
synchronizes with its neighbors, then there is no need for data transmission any more, thus 7, = oo. The proof is
completed. [ |
Remark 1. As shown in (24), when we are dealing with multi-agent system with heterogeneous dynamics, it is
usually difficult to get a common lower bound on {7, }s. Thus, it is not very practical to impose an common
upper bound on the admissible network induced delays based on the inter-event time implicitly determined by the
triggering condition.

VI. CASE STUDY: EVENT-DRIVEN CONSENSUS PROBLEM

In this section, we apply the results obtained in the previous sections to study the first order consensus problem.
Since data transmissions among those coupled agents are event-based rather than synchronized, one could consider
the control problem studied in this section as “asynchronous consensus” problem reported in [2], [3].

The system considered consists of [NV agents, with z; € R denoting the state of agent H;. Note that the results
derived in this section are extendable to arbitrary dimensions by using Kronecker algebra. We assume that agent’s
motion obeys a single integrator model

l"i — U;
(25)
Yi =4
with control
wi(t) = Y a(@k, — Ur,) (26)
JEN;

for t € [ty,,tk,+1), where a > 0 is some positive scalar.

Theorem 2. Consider a network of N agents with each agent’s dynamics described by (25)-(26). Assume there
is no data transmission delay in the network. Under assumption Al, if each agent H; transmits its current output
information to its coupled neighbors whenever the triggering condition (11) is satisfied, then those coupled agents
output synchronize to their initial average asymptotically, i.e.,

N
. _ 1
tlirglo zi(t) =T = N z_; x;(0), (27)

fori=1,2,...,N.

Proof: The proof to show output synchronization under the triggering condition (11) is identical to the proof
shown in Theorem 1 since single integrator model is lossless. Thus, we have lim;_.(z; —2;) = 0, V%, 7, it remains
to show agents output synchronize to their initial average. Let

_ 1
7=+ Zx (28)
i=1
then we have
1 & 1 & 1 &
T = ﬁsz = ﬁZUZ = NZ Z a(ZTy, — Tg,)
i=1 i=1 i=1jeN;

(29)



under assumption Al, we have T =0, Vt > 0, thus
L X
T =T(0) = NZ;%(O). (30)
i

Since limy_.oo(z; — ;) = 0, Vi, j, this implies that lim; o z; = % Zf\i 1 2i(0), Vi, and the proof is completed.

|
Proposition 2. Consider a network of N agents with each agent’s dynamics described by (25)-(26). Assume there
is no data transmission delay in the network. Under assumption Al, the inter-event time [ty, 1 — t,] implicitly
determined by the triggering condition (11) is lower bounded by

61 ien 1k, — T, |13
tkle - tk‘1 > Tk = _ ZJEM’ ||/\ - = 22 (31)
all X jen (Tk, — 23
for k = 0,1,2,..., with 6, € (0,0.5].
Proof: For t € [t,,tk,+1),
d : : o
gpleillz < lléillz = liillz = lluillz = lla > @k, — )2, (32)
JEN;
so the evolution of ||e;||2 during the time interval [t,, ¢, +1) is bounded by the solution to
d oA
790 = lla > @k — )2 (33)

JEN;

01 z.jej\/’i ”:’U\k‘z 7@"‘7‘ Hg

— 1s lower bounded
H z.jej\/’i (ykj _yki)HQ

with initial condition ¢(t;,) = 0. Thus the time for ||e;||2 to evolve from 0 to

o 61 Zje/\f’i ”/y\]ﬂ _gk]‘ H%
” Zje/\fi (@kj 7@"‘1)”2

_ 01 ZjeM %
all X jen; @k, — Tk,
The proof is completed. u

Example 2. We consider the “asynchronous consensus” problem as discussed above, the topology of the underlying
communication graph is given by

by the solution to ¢(tx, + T%,) , and we can get

Tk, — Tk,

%

Tk, (34)

%

1 0 0 o0 -1
-1 1 0 0 0

L=|0 -1 1 o0 o0]. (35)
0 0 -1 1 0
0 0 0 -1 1

The simulation results are shown in Fig.2 and Fig.3.

In Fig.2, the x-axis shows the time instants of events while the y-axis shows the length of inter-event time of each
agent. Fig.3 shows the evolution of agent’s state. With initial state x1(0) = 20, 22(0) = 4,23(0) = 100, 24(0) =
—60, 5(0) = —15, and + Zf\il x;(0) = 9.8, the agent’s state converges to their initial average.
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Fig. 2: simulation result of example 2: event time
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Fig. 3: simulation result of example 2: consensus
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VII. OUTPUT SYNCHRONIZATION WITH EVENT-DRIVEN COMMUNICATION AND CONSTANT
COMMUNICATION DELAYS: A SCATTERING TRANSFORMATION APPROACH

In this section, we propose a set-up to achieve output synchronization of multi-agent systems in the presence
of constant network induced delays by using event-driven communication and scattering transformation. Scatter-
ing transformation has been used earlier in the problem of bilateral teleoperation and NCSs to guarantee delay
independent stability, see [10], [13], [16] and [17]. In our setting for event-driven communication with scattering
transformation, the agents transmit the so called “scattering variables” instead of their outputs to the neighbors,
and the data transmissions are event-based. The set-up for the event-driven communication strategy with scattering
transformation is illustrated schematically in Fig.4.

+ + ~ 4+ R
il Ujile U jil1) aly,(6)=yl
| Lo +
A~ o Mlllm i o le ; o ZOH o M22 Im
Vi
y ; -
JOH network 7 \
ED 21,] |dgent j
i M22
Y A
M, Y
M,y "
Agent i 2 . ) ) ZOH ED
A _ Ulj(t) U,-j(t) Uji(l) WS
+ 1 ; ; Vi
- !, te— ZOH (a—| T . |a—— M, I, |- b
M22 "" jl ": m

a[y,‘,;(t>_5//(i]

{ network |

Fig. 4: event-driven communication with scattering transformation

In Fig.4, the “ED” block represents the “event-detector” , and whenever the event-detector detects that the
corresponding agent satisfies its specific triggering condition, an updated scattering variables (U;;(t) or U;i(t) as
shown in Fig.4) will be obtained and sent to the neighboring agents. The event time of agent ¢ is defined by the time
sequence {t, },k; = 0,1,2,... and the event time of agent j is defined by the time sequence {¢;,}, k; =0,1,2,....
The “ZOH” block represents the zero-order hold, thus 17;-;-(15) holds the last sample of U;;-(t) and v;;(?) holds the
last sample of v;; (). Tj; represents the communication delay form agent j to agent ¢ while T;; represents the
communication delay form agent 7 to agent j. T;; and T}; are not necessarily equal to each other. As the scattering
variables are transmitted over networks, we have

vi(t) = vl (t = Ty) and v (t) =vj;(t —Tp), ¥(i,5) € E(G). (36)
Let the agents be coupled together using the control
u;(t) = alyjs(t) — Ui, ], for t € [ty tht1), ki =0,1,2,..., (37)
with yx, = vi(tg,), and
u;(t) = a[yis(t) — gjkj], for t € [ty tx,+1), kj =0,1,2,..., (38)

with . = y;(tk,), V(4,7) € E(G). a > 0 is a constant representing the coupling among agents as shown in
the adjacency matrix of the underlying communication graph. We assume y;s(%), ¥;s(t), Yk, and yj, are signals
belonging to Lo.. The variables y;,(t) and y;,(t) are derived out of the scattering transformation which is given by

1 __ Moy . ~
For t € [ty,, tk,+1), M—szij(t) - M—z;yk = aly;s(t) — Ui, (39)

At t =ty,, Miyk, = U;;-(t)
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and

Fort € [tkj,tijrl); (40)

Att = tkj? Mll@\kj = Uj_i(t)7

Y(i,7) € E(G). Positive constants My, Moy, Mao are the parameters of the scattering transformation. The super-
script +, — for the scattering variables is a convention for the direction of the power flow.

As shown in Fig.4, agent ¢ transmits the scattering variables v;;(t) to agent j who receives it as the scattering
variables v;;(t) Agent j then uses the control a[y;s(¢) — Uk;] to extract the variables y;4(t) output of the variable
17;;(15) A similar procedure is used to obtain the variables y;,(¢) by agent i. One should notice that agent i is
participating in |\;| closed-loops as the one demonstrated in Fig.4, where |;]| is the number of neighbors of agent
i.

Theorem 3. Consider the set-up of event-driven communication with scattering transformation between any coupled
lossless agent 7 and agent j with m inputs and m outputs as shown in Fig.4, V(i, j) € E(G). Choose M1y = Moy =
4, Moy = La Assume that the communication delays between agent ¢ and agent j are constant and finite. Then
if agent ¢ transmits its current output information to its neighbors whenever the following triggering condition is
satisfied
03 Zjef\ﬂ-, ”yjs(t) - ka2
A~ 9
1 en: [wis®) = ]

where €;(t) = yi(t) — Uk, for t € [t,,tx,,,), and 63 € (0,1], then under A2, those coupled agents will output
synchronize asymptotically.

Proof: The proof is provided in the Appendix A. [ |
Remark 2. If T}; = T}; = 0, since

llei(@)ll2 =

vt >0 (41)

17;-2 = M11Gk, = Mo1Gk, + Mosa[yis(t) — Uk, ], for t € [ty,, tr,+1], (42)
we can get
Yis(t) = %@k + Uk, ), for t € [t ty,11]. (43)
Similarly, we can obtain
yjs(t) = %(171@ + Uk, ), for t € [tr,, th, 1] (44)

where ., and ¥, are the latest output information sent by agent ¢ and agent j respectively. And one can verify
that, in this case, the triggering condition (41) becomes

1 e @y = Gi)
with §; € (0,0.5], V¢ > 0, which is the same as the triggering condition derived in Theorem 1 for no data
transmission delays case.

Example 3. We consider again the “asynchronous consensus” problem studied in section VI, the underlying
communication graph is given by

2
2

lei@)ll2 = : (45)

B

3 -1 -1 0 -1
-1 2 0 -1 0

L=|-1 0 1 o0 0], (46)
0 -1 0 2 -1
-1 0 0 -1 2

thus the topology of the underlying communication graph satisfies A2. Let the communication delay between
each coupled agents be randomly generated from the interval [1,2]s, and we use the set-up of event-driven
communication with scattering transformation for each coupled agents, the simulation results with initial condition
21(0) = —20,29(0) = 15,23(0) = 32,24(0) = 68,25(0) = 0 are shown in Fig.5-Fig.6, the states of agents finally
converge to a value around 10.4 while their initial average is 19. Thus in this case, the event-driven consensus
problem cannot guarantees agreement around the initial average if we consider arbitrary constant communication
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delays among the coupled agents. Also observing from simulations, with different communication delays, the final
agreement is also different. Fig.7 and Fig.8 show the simulation results by randomly generating communication
delays from the interval [0, 1]s and [2, 3]s while the initial conditions of agents are kept the same. However, if
there is no communication delays between any coupled agents, then the states of agents will still converge to their
initial average with the scattering transformation set-up, this is shown in Fig.9.
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Fig. 5: simulation result of example 3: event time with communication delays in [1,2]s
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Fig. 6: simulation result of example 3: consensus with communication delays in [1,2]s reaches agreement at 10.3
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Fig. 8: simulation result of example 3: consensus with communication delays in [2,3]s reaches agreement around 5.6
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VIII. TRIGGERING CONDITION FOR OUTPUT SYNCHRONIZATION WITHOUT COMMUNICATION DELAYS:
QUANTIZATION EFFECTS

It was assumed in the previous sections that each agent is equipped with an “event-detector” which is able to
measure the output of the agent with infinite precision, and the event-detector uses that measurement to examine
the corresponding triggering condition of the agent and transmit that measurement through the network whenever
the triggering condition is satisfied. In reality, however, the transmitted measurement first has to be quantized
in order to be represented by a finite number of bits and to be used in processor operations and carried over a
digital communication network. Thus, it becomes necessary to study the effects of quantization error on output
synchronization of the networked multi-agent system with event-driven communication.

Assume that the control input to agent H; is given by

u’t(t) - Z a[Q(@\kJ) - Q(@\kq)]’ for t € [tki’tki+1)’ kz - Oa 17 2a s (47)
JEN;
q(Ur,) is the quantized latest transmitted output information of agent H; by the time ¢ and q(¥y,) is the quantized
latest transmitted output information of agent H; by the time ¢. We first assume there is no communication delay
in the networks.

Each agent is equipped with an “event detector” and a “quantizer”. The event detector can continuously (or
with adequately small sampling period) monitor the output of the agent, and whenever it detects the “triggering
condition” associated with the corresponding agent is satisfied, it will get a sample of the agent’s current output
information denoted by y;(tx,) = yk,(With ¢, denoting the event time of agent ¢) and sends this sampled output
information to the quantizer. The quantizer then processes the received data and the quantized output information
q(yr,) will be sent to the neighboring agents of agent H;. We assume the data processing time in the quantizer is
negligible.

For t € [tk,, tk,+1), let e;(t) = vi(t) — Yk, denote the output novelty error with respect to the sampled output
information; let e, = Y, — q(Ur,) denote the quantization error with respect to the sampled output information;
let €;(t) = yi(t) — q(yx,) denote the output novelty error with respect to the quantized sampled output information.
One can verify that €;(t) = y;(t) — Uk, + €k,. With event-driven communication and quantized sampled output
information transmitted between coupled agents, we have the following theorem.

Theorem 4. Consider a network of N lossless agents with control (47). Under assumption Al, if each agent H;
transmits its current output information to its neighbors whenever the following triggering condition is satisfied

K

1—
i(t)]|e =0 Vt>0 48
Hel( )HQ 4( 9 26 |N| Z”q yk ) 29 =Y (48)
where 6, € (0,1], 0 <k < 1and 1 < ;= < (3, then the output synchronization error of the studied multi-agent
system is bounded by the quantization errors of agents’ latest transmitted output information by the time ¢.
Proof: The proof is provided in the Appendix B. [ |

IX. SPECIAL CASE: EVENT-DRIVEN CONSENSUS PROBLEM WITH QUANTIZATION

In this section, we study the consensus problem with event-driven communication and quantization as a special
case for the problems investigated in the previous section. We assume that agent’s motion obeys a single integrator
model as shown in (25) with control

wit) =Y alq(@r,) — ¢(@r,)] (49)

JEN;

for ¢ € [tg,, tk,+1), Where g(Uy,) is the quantized value of agent H;, s latest transmitted output information, q(7k,)
is the quantized value of agent H j's latest transmitted output information. '
Lemma 2. The cascade connection of an integrator and a passive memoryless function h as shown in Fig.10, is
still lossless from u to h(x).

Proof Passivity of h guarantees that fo o)do > 0 for all z. With V(z fo o)do as the storage function,
we have V = h(x)i = yu. Hence the system is lossless. [ |
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u f x B y=h(x)

\

Fig. 10: cascade connection of an integrator and a passive memoryless function

Remark 3. Lemma 2 indicates that the cascade connection of an integrator and a passive memoryless quantizer
can be studied as a lossless system with the quantized output as the new output of the system. This result enables
us to derive the triggering condition for the event-triggered consensus problem with quantization.

Assume that each agent is equipped with a passive memoryless quantizer ¢(-) and an event detector which is
denoted by “ED”as shown in Fig.11. The event detector continuously (or sampling with an adequately fast sampling
rate) monitors the output of the quantizer connected with the agent, and whenever it detects that the triggering
condition associated with the agent is satisfied, a quantized output information ¢(y,) at that event time (¢j,) will be
transmitted to the agent’s corresponding neighbors. The theorem below provides a triggering condition to achieve
consensus among the coupled agents.

oo
u, (1) [ ym‘ﬂquﬂm=Equm .

-

Fig. 11: cascade connection of an integrator and a passive memoryless quantizer

Theorem 5. Consider a network of N agents with each agent’s dynamics described by (25) and (49). Assume there
is no data transmission delay in the network. Under assumption Al, if each agent H; transmits its current output
information to its coupled agents whenever the following triggering condition is satisfied

_ 952 jen; la(@r,) — a(@x.)
1> en [a(@r,) — a@x)]]

for some 05 € (0,0.5], where €;(t) = q(vi(t)) — q¢(Uk, ), then those coupled agents will converge to a value around
their initial average asymptotically, i.e.,

k vt >0, (50)
2

210

N
: 1 .
tlggo zi(t) =& = N E_l z;(0), Vi.

Proof: The proof is provided in Appendix C. [ |
Example 4. We consider the “asynchronous consensus” problem as discussed above, the underlying information
exchange graph is given by (35), which satisfies assumption Al. Assume that each agent is equipped with a uniform
mid-tread quantizer with quantization level 0.5 (one can verify that a uniform mid-tread quantizer is passive since
yi(t)q(yi(t)) > 0). The simulation results are shown in Fig.12-Fig.15. In Fig.12, the x-axis shows the time instants of
events while the y-axis shows the length of inter-event time of each agent. Fig.13 shows the evolution of quantized
output of each agent, Fig.14 shows the evolution of the state of each agent and Fig.15 shows the evolution of
average of the agents’ state. With initial state x1(0) = 20,29(0) = 4,23(0) = 100, 24(0) = —60, 25(0) = —15,
we have % Zf\i 1 2i(0) = 9.8. And one can see from Fig.13-Fig.15 that while the quantized output of each agent
converges to 10, the average of the agents’ state keeps constant at their initial average 9.8 along with time, and the
state of each agent finally converges to a value around 9.8.
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X. TRIGGERING CONDITION FOR OUTPUT SYNCHRONIZATION WITH CONSTANT COMMUNICATION DELAYS:
QUANTIZATION EFFECTS

In section VII, we proposed a set-up to achieve output synchronization among coupled agents with event-driven
communication in the presence of constant network induced delays by using scattering transformation. In this section,
in addition to communication delays, we take quantization into consideration and further study the quantization
effects on the output synchronization based on the set-up shown in section VII.

Let the agents be coupled together using the control

JEN;
u](t) - Z a[yzs(t) - Q(MQIZ/-/\]@J')]’ for t € [tkj7tkj+1)7 j = Oa 17 2a ceey
iEN;

V(i,j) € E(G), where q(Ma17y,) and q(Ma1¥y,) denote the quantized values of Moy, and Moy, respectively.
The variables y;5(t) and y;s(¢) are derived out of the scattering transformation which are given by

6]

1 1
for t € [ty ., t. , —U. () — ——q(Mx1y1.) = () — q(Mo1 g,
or t € [ty,, tr,+1), MQQU”( ) MQQQ( 210k,) = a[y;js(t) — (M2 Gy,)] (52)
at t = ty,, U;;(t) = q(Mi1Yk,), and
1 _ 1 ~ ~
for t € [ty,, t;11), M—szﬁ(t) - M—QQQ(leykj) = a[yis(t) — q(M21 7y, )] (53)

att =ty,, v;;(t)=q(M1¥,)
v(i,j) € B(C).

wavs

1 4m

+ + ~ +
U?/(t) Ufi(t) U./i(t) - a[ym(t)_Q(le)A/k,‘)]
g : +
* vty 1, |—of On |—| T || zOH | Mnlm—b?—
S M, 1 | network |
»Yki 21 4 \ \ 1 7 v
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ED y Agent ]
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Fig. 16: event-driven communication with scattering transformation and quantization effect

Positive constants M1, Mo, Mooy are the parameters of the scattering transformation. The superscript 4, — for the
scattering variables is a convention for the direction of the power flow. The set-up for the event-driven communication
strategy with scattering transformation is illustrated schematically in Fig.16. The “ED” block represents the “event-
detector” , and whenever the event-detector detects that the corresponding agent satisfies its specific triggering
condition, a newly sampled output information will be sent to the quantizer (denoted by “Qn’’) and updated scattering
variables (v;;(t) or v;(¢) as shown in Fig.8) will be obtained and sent to the coupled agents. The event time of
agent ¢ is defined by the time sequence {tx,}, k; = 0,1,2,... and the event time of agent j is defined by the time
sequence {tx, }, k; = 0,1,2,.... The “ZOH” block represents the zero-order hold, thus 17]7;(15) holds the last sample
of U;-Li(t) and v;;(¢) holds the last sample of v;;(?). T}; represents the communication delay form agent j to agent
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¢ while T;; represents the communication delay form agent ¢ to agent j. T;; and T}; are not necessarily equal to
each other. As the scattering variables are transmitted over networks, we have
vji(t) = vl (t = Ty) and v (t) = vy (t — Tj), V(i,5) € E(G). (54)

J

Agent 7 transmits the scattering variables v, (t) to agent j who receives it as the scattering variables U+(t).

Agent j uses the control a[y;(t) — (Mglyk])] to extract the variables y;;(¢) output of the variable U] (t) A
similar procedure is used to obtain the variables y;s(t) by agent 7. One should notice that agent 4 is participating in
|V;| closed-loops as the one demonstrated in Fig.16, where |N;| is the number of agents that send output information
to agent ¢.
Theorem 6. Assume that the underlying information exchange graph satisfies assumption A2 and the data transmis-
sion delays between each coupled agents are constant and finite. Consider the set-up of event-driven communication
with scattering transformation and quantization between any coupled lossless agent ¢ and agent 5 (with m inputs
and m outputs) as shown in Fig.16. The control action for each agent is given by (51). The parameters of the
scattering transformation are chosen such that My = M1 > 0 and aMye = 2. Define e;(t) = My, [yi(t) — ﬂk}
as the output novelty error of agent ¢, ¢ = 1,2,..., N. If agent ¢ transmits its current output information to its
neighbors whenever the following triggering condition is satisfied

1€ (@®)]l2 = Z | wss(t) — a(M21Gi,)]] . ¥t >0 (55)
W\ P

for some dg € (0, 1], where 0 < v < 1 and 0 < 8 < 2. Then the output synchronization error of the studied multi-
agent system is ultimately bounded by the quantization errors of agents’ latest transmitted outputs information in
the networks.

Proof: The proof is provided in the Appendix D. [ |
Example 5. We consider again the “asynchronous consensus” problem as studied in section V, the underlying
information exchange graph is given by (46), thus the topology of the underlying information exchange graph
satisfies A2. Let the communication delay between each coupled agents be constant and we randomly choose
the delays from the interval [1,4]s. We use the set-up shown in Fig.16 for each coupled agents, and we choose
My = Myy =1, Mg = 2,6 =1, v = 0.9 and 8 = 0.1. The quantizer of each agent is a uniform mid-
tread quantizer with quantization level 0.5. The simulation results with initial condition z;(0) = —20,22(0) =
15,23(0) = 32,24(0) = 68, 25(0) = 0 are shown in Fig.17-Fig.19, the states of agents finally converge to a value
around 3.4. However, if we randomly choose the delays from the interval [0.5,1]s, the states of agents finally
converge to a different value which is around 9.5 as shown in Fig.19.
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Remark 3. It could be seen from Example 3 and Example 5 that when arbitrary constant network induced delays
are considered in our proposed set-up, the event-driven consensus problem may not be able to achieve agreement
at the agents’ initial average, and with different constant delays, the final agreement value could be different.
However, as seen from Example 2 and Example 4, it is still possible to achieve average consensus with event-
driven communication (and with signal quantization) in the presence of network induced delays as long as the
delays are upper bounded by the inter-event time implicitly determined by the triggering condition. It is interesting
to further study distributed algorithm which could achieve average consensus with event-driven communication
in the presence of arbitrary constant network induced delays. However, it is not the focus of our interests in the
current paper. Note that in many control applications of multi-agent systems, in order for all the agents to achieve
output synchronization at some specific value or within some pre-determined set (i.e., leader following problem
or rendezvous problem), we could designate certain agents as leaders in the group and send important leading
information to the leaders from time to time, while the information exchange between leaders and their followers
are still event-based as the event-driven communication set-up shown in the current paper.
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XI. CONCLUSION

In this paper, we study the output synchronization problem of multi-agent systems with event-driven commu-
nication. We assume all the agents in the network are lossless and we use scattering transformation to deal with
network induced delays between coupled agents. Whenever the agent satisfies its triggering condition, a scattering
variable which contains the sampled output information of the agent will be sent to its coupled neighbors, and the
neighbors will extract reference information from its received scattering variables for its control action update. The
proposed set-up allows us to find a composite storage function (which is derived from the scattering transformation)
to analyze the stability of the entire system. The result presented in this paper is an important extension of applying
event-driven communication to control of multi-agent systems, especially when it is difficult to derive a common
upper bound on the admissible network induced delays or when the network induced delay between coupled agents
is larger than the inter-event time implicitly determined by the event triggering condition. Quantization effects
on output synchronization with event-driven communication have also been investigated in this paper. We have
shown that output synchronization error of coupled agents is ultimately bounded by the quantization errors with
the event-driven communication set-up proposed in this paper.
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APPENDIX A
PROOF OF THEOREM 3

Proof: With T;; and T}; being constant and finite, we can verify that

t t t t
[ lesiar < [l ana [ fegeliar < [ ool 56
Since . . ne
* v ki+1
[ sl = > se-wnilali < 0 [ st e o7
k;=0 ki=0""*i

where 0(+) is the Dirac delta function, n; is the number of scattering variables sent from agent 4 to agent j during
the time interval [0, ¢]. Similarly, one can obtain

: n; n; by 41 R
ol = 3 - wpaaila i< S0 [ wka e %)
k;=0 k;=0""%;

where n; is the number of scattering variables sent from agent j to agent ¢ during the time interval [0,¢]. Denote

t
 Istear = 32 [ bl e

t .
[ el =30 [~
0 k;=0 Tk

If we let 7; denote the number of scattering variables received by agent j during the time interval [0, ¢], then we

can obtain -
t n;
[ ol = Y- ot 1, - 7)

Note that due to delay 7;; from agent 4 to agent j, we have 7; < n;. Since ﬂ;;(t) holds the last sample of U;-Li(t),
we have

(59)

(60)

0 (t) = Mi1G,, for t € [ty, + Tij, t, 41 + Tij), (61)

[ ||2dr—Z/

therefore

. (62)
= Z M |, ||3dT

Similarly, since v;;(¢) holds the last sample of v;;(¢), we can get

0;;(8) = Muyy,, for t € [ty + Tji, by, 41 + Tjal, (63)
therefore R

t o 9 " by +1+T5i L2
[ e =5 [ Iyt far
0 k=0 7 tr; T
’ (64)

n; thjt1 o
= Z/ M || Yk, llzdr-
k;=0"t;

Since n; > n; and n; > n;, thus we have

t t t t
[ sl = [spoliar+ [ sl - [ ke = o )



Since for ¢ € [ty,,tx,+1], we have
1 _ Moy . ~
+ N . J—
jv‘ﬂ(t) - MQQ yk;j — a[yls(t) yk‘]]
= ﬂ;(t) = [2\421:7./\kj + JMQQG(yiS(t) - Z/J\kj)]’

and for ¢t € [ty,, tk,+1], we have

1 Moy —~
T (0 = STk = aly;s(t) — Ur,]

= 0,;(t) = [Ma1Tk, + Maza(y;s(t) — U,)],
therefore

t " lkj41
/0 ||77;;(T)||§d7 = Z /t HM21§kj + Maoa(yis(t) — Ur,) Hng
k,;=0""kj

t U 7R
/0 55 (M) l5dr = >° / | M215i, + Mozaa(yso(t) = i) [0
k;=0" ki

with M1, = My, = 4 and Moy = ﬁ, we can get

¢ ~t 2 L [tara

[l =3 [ [l
k;=0""%;

t i b, +1
[ = 3 [ [§15 - i+ e ] e
¢ k;=0" "ki

t i tr,+1
[ Esegar =3 [ flalier
¢ k;=0" "ki

t 3 ) n; tkj+1 Q.
[oa@iar =3 [ 4,
/0 k‘jZO‘ tkj

> — aylge, + allyisll3) a7

2
QdT,

thus if we define

Ny t Lo L b
vi = [l [ I5gikar+ [ el - [ ek

then we can get

N AN TP 2
Vi = Z/t [ayjs(T)yqu - a||yjs(T)H2} dr
k=0 7 ths

" lkj41
e [ [k, - )] ar
k)j:O kj

Consider a storage function for the multi-agent system given by
al 1
_ 4 (]
veYuis X v
=1 (i,§)€E(G)
where V; is the storage function of agent 4, such that vV, = uiT(t)y,-(t), Vvt > 0. Since

N N n;

Svi-y s [ e
i=1 i=1 k;=0" ki
N n
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(67)
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and
by 1

> V”—ZZ/ 0 3 [ ~ o] z

(i,§)EE(G i=1 k;=0 JEN;

therefore, we further get

M=

V=>"a> [ut)— bk +Z ST RO -]
=1 jeN, =1 jeN;
N
+ Z a Z (Y7 Tr, — lyss(®)113]
i=1 jeN;
N . (75)
=>ad W0 —d] et > a Y [0
i=1 jeN; i=1 N
N
< Z les@o D Twis@® = Te] |l —Za > wis(®) = Gl
P JEN; i=1  jEN;
so if )
. () =T
lles ()2 < 2 jen, |935(t) 2 vt >0, (76)

=TS en: (9520 — ]

then V < 0. Notice that the triggering condition (41) guarantees that (76) holds. Invoking LaSalle’s Invariance
principle[1], we can conclude that lim;_,., V = 0, thus we can further conclude that

Jim [y0(6) = 5] = Jim [uis(t) = 5] =0, ¥(i,j) € B(G). (77)
—00 t—o0
Under the triggering condition (41), (76) and (77) also implies that
lim e;(¢) = lim [y;(¢) — Uk,] =0, Vi, (78)
t—o0 t—o00 )

which yields
lim y;4(t) = lim g, = lim y;(¢) and
t—o0 t—o0 t—oo

79
lim y;5(¢) = lim g, = lim y;(t) (7)
t—o0 t—oo t—o0
V(i,7) € E(G). Since
lim Mnﬂki = lim 17;;(15) = lim [MQl/y\kj + MQQCL(yiS(t) - @\kj)], (80)
t—oo t—oo t—oo
thus limy oo Yk, = limy—co Yk, Similarly, we have
Jim Mg, = lim 0;5(¢) = lim [Ma1Gk, + Maza(y;s(t) — U,)], (81)

thus lim; oo Yk, = limy oo Yk, Under A2 and in view of (79), we can conclude that lim; . ¥;(t) = limy o ¥i(2),
V(i,7) € E(G), which completes the proof. [ |
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APPENDIX B
PROOF OF THEOREM 4

Proof: Consider a storage function for the multi-agent system given by V' = Zf\il V;, where V; > 0 is the
storage function for agent H; such that V; = u! (¢)y;(t), vt > 0. Since all the agents are lossless, then we have

N
V=3 ala@,) - a@)] vi®)
i=1 jeN;
al T
=33 alq@,) — a@)] [E() + a(@i,)]
i=1 jeN;
N N i (82)
=55 ala@) —a@)) &0 + 2 ala@,) — a@)] el
i=1jeN; i=1 jEN;
N N N
=3 ala(@,) - a(@r) TE) + SN aq@e) @) =D D aa(@e) a(G,)
i=1 jeN; i=1 jEN; i=1 jeN;
as the underlying information exchange graph is balanced, we have
N N N
D> aq@r) (@) =05 Y aq(@k) @) + 05D D aq(@,)" a(Gk,), (83)
i=1 jeN; i=1 jeN; i=1 jeN;
and therefore, it follows that
N
V=" ala@,) - a@i)] Z > —Hq Ur,) — a2
i=1 jeN; i=1 jeN;
N
=3 ala(@,) — a(@k, )7 [est) + e Z > —||q Uk,) — q(Ur, H2
i=1 jEN; i=1 jEN;
N
<> Z alla(@,) — a@r.)|], ]| (@), +Z > alla@r,) = a@r) |, lex. |l
i=1 jeN; i=1 jeN; 84)
N a , (
-> ) §|| q(Ur,) — a(@r,)||;
i=1 jEN;
al 2
< Z alla(@x,) — @) | ,lles )]l +Z Z QﬁHq Uk,) — a@) |5
i=1 jeN; i=1 jEN;
N a8
+ZZ ”k”z ZZ‘”ka ,whereﬁ>0
i=1 jEN; i=1 jEN;
choose 0 < kK < 1 such that 1 < 1 — < [3, then we can further get
V< Z > allat@,) = a@ll,lle)l, - Z > [ %} la(@i,) — a5
i= 1]€N i=1 jEN; (85)
*Z > —|| ekl — Z > —Hq Te,) — a2
i=1 jEN; i=1 jeEN;
so if we can guarantee that
(=5 = D la(@) — a2

> sen: [4G@) — a@e)l,
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then we will have

N
Z > 5 D e - Z > Slla@,) = a5 ve = o. 87)
i=1 jEN; i=1 jeN;
Note that ) )
~ ~ 112 ~ ~
S @) — a@)lls = o (X o) - a@)ll,)
: Wil \ -
JEN; JEN:
thus 2
S ien: la@r,) — a@r) |, N S ien: 1a@r,) — a@r) |, (88)
11—~k 1 1 N ~
= (T - %)m]%\:/ HQ(Z/kj) (J(Z/ki)”y
so if -

then (86) holds and so does (87). Note that the triggering condition (48) actually guarantees that (89) is satisfied.
In view of (89), we can further get

Z > lle®llz = Z WNillles(@)]l2 <

i=1 jeN; i= 1]6]\/

—B) la@r,) — a(@k,) |, (90)

since €;(t) = ei( ) + €k,, we can get

Z YolE@I <Y > el +Z > llenllz = Z WNillles (£l +Z Nillle,ll2

i=1 jeN; i=1 jEN; i=1 jEN; 1)
N
1_
<33 (5 - 5p)llata) — i M+ 3 Wil
i=1 jeN; i=1

Since the underlying information graph is balanced, we have

N N
Dod @l =" > @l (92)

i=1 jEN; i=1 jEN;
Now, let’s integrate both sides of (87) from ¢y to ¢, Vi > tg > 0, then we will get

V(zt) = V(a,) / Hé‘k l5dr — / Z > —||q (Tr;) — (T, |57, (93)

to j— lge/\f to = 1 jeN;
thus
@ 2
0<V(x) / ka l5dr — / Z > —||q (Uk,) — q(Ok,)||5d7 + V (4,). (94)
o j— 1]6/\/ lo j=1 jeN;

Since we can arbitrarily choose ¢ > 3, we can conclude that

ZZ DB 34 V(i) >Z > —Hq @r,) — a(@) | >

i=1 jEN; i=1 jeN;

Vi > to. (95)
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Moreover, since

N ak - - 2
Z > —||q Tr,) — a@e) s = N ( > la@r,) - q(yk,-,)||2)

i=1 jeN; =1 JEN;

N (96)
z%(;,gw > luti) - @e),)
we have N
ak - a
Vzw 2 M) = ale) < 33 Plew i+ Vi) .

v
Z !N!H% 15+ V (2,)-

Taking the square root of both sides of (97) yields

N
Vo Z WZN o) = ot < 3 VI Dl + T ©8)

Let N,, = max;{|N;|}, then (98) also implies

ar
lq(Yk,) Vixy,),
\/_\/QN;;; ks .
S5 laGi) A

i=1 jEN;

2NN,

V(). (99)

Since [|a(Gi,) — 4@, = [Ju(t) — & (8) - wi(t) +a~<t>H2 > [|j(®) = @], — [Z@l2 — [2(2) ]l replace it
into (99), we can get

N N
NN 9NN,
S5 w0 - @l < /2 NGCS)
=L jeN: " " 100
N N (100)
+ Z Z le:()ll2 + Z Z lle; () llz,
i=1 jeN; i=1 jEN;
in view of (91) and (92), we get
N N
NN 9NN,
33 ls0) )l < /S Wl ) V)
=1 jEN: =1 (101)

N
+ZZ 1—/@—— Ma@k,) = a@i)lly + D 2Nl llek, llo-

i=1 jEN; i=1
In view of (99), (101) further yields

N
ZZHy] — 4i(t)]l SZ[@—R—E)\/MN VIV +2w@ e 12

i=1 jeN,; i=1 (102)

+(2—/§—3)\/2NN VV(zy,), Yt > to.

(102) implies that the output synchronization error in the multi-agent system is bounded by the quantization errors
of agents’ latest transmitted output information by the time ¢. The proof is completed. [ |
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APPENDIX C
PROOF OF THEOREM 5

Proof: Based on Lemma 1, choose V(z;) fo o)do as the storage function for each agent, then we have

Vi = u;i(t)q(yi(t)), Yt > 0. Consider a storage functlon for the multi-agent system given by V' = Zl 1 Vi, then
we have

.MZ
g

V= ZZ k) — a(@k)] [ei(8) + a(@,)]

i=1 i=1 jeN;
N

=3 ala(@,) — a(@r) +Z > ala(@,) — a(@k.)] a(@r.) (103)
i=1 jEN; i=1 jEN;
N N

=3 ala@,) — q@k)]it) + Z > ag(@)a(@r) =D D aq(@i,)’,
i=1jEN; i=1 jEN; i=1jEN;

as the underlying information exchange graph is balanced, we have

N N N
o> aq@)’ =05> > aq(B)* +05Y > aq(@i,),

i=1 jEN; i=1 jEN; i=1 jeN;
and therefore it follows that

. Z S aloi,) — a@k) Z >~ 0.5a]| (@) — @)

i= IJEN i=1 jEN; (104)
< Z el > ala@i,) — a@r)] ||, — Z >~ 0.5al|q(@k,) — a3
JEN; i=1 jeN;
so if we can guarantee that
. 0.5 Ur.) — q(U. . 0.5\|q(Yk.) — q(us
les(®)]]2 < 2 jen; a||q£ykj) qﬁyk)”2 _ > jen; 0-5] a(@i,) k)|l Wt > 0, (105)
1 5en: ala@e,) —a@)lll, |2 en: [a@,) — a(@ ]Hz

then we will have V' < 0, V¢ > 0. Note that the triggering condition (49) actually guarantees that (105) is satisfied.
Moreover, we can rewrite (103) as

N
V=>">" ala@,) - a@)]a(ui(t))
i=1 jeN;
N
— ;]EM [Q(y](t)) — Ej(t) — q(yz(t)) + Ez(t)]Q(yz(t)) (106)
N
=57 alaly(0) - 33 ol 0 <o)
i=1 jeN; =1 jeN;
= —q(V)TLq(Y) + ETLq(Y),
where Y = [y1,92,...,yn]T, E= [e1,€2,...,en]T, q(+) acts component wise on the vector Y, and L is the graph

Laplacian of the underlying information exchange graph. Since under the triggering condition, we have V <0,in
view of (106), based on LaSalle’s Invariance Principle and assumption Al, V' < 0 also implies that

A [g(ui(6) — a(y;(1)] =0, V(i) € B(G). (107)
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Further more, since

1 & 1 1
N 2Bl = > w®) =5 > > alal@) — a)]
i=1 i=1 i=1jeN;
o L (108)
== alq(z;(t) — q(z:(t)] — + alej(t) —ei(t)],
N ;je./\f [q ! ] N ;je./\/' [ ]
under assumption Al, we have
N
1 Z S afg ~ g(zi(t)] =0, and %Z S afs() — es()] =0,
=1 jEN; i=1 jEN;

thus +- SN &i(t) = 0 and 2 N Zf\;l x;i(t) = Zf\;l x;(0) =0, vt > 0. In view of (107), we can further conclude that
the state of each agent will converge to a value around their initial average asymptotically. The proof is completed.
|

APPENDIX D
PROOF OF THEOREM 6

Proof: With T;; and T}; being constant and finite, one can verify that

/HZMW</M mde/m]mm</u 3dr.

Ty +1
[ e = 3" ot~ te)la(ag / (M55
k=0

where 0(+) is the Dirac delta function, n; is the number of scattering variables sent from agent ¢ to agent 5 during
the time interval [0, ¢]. Similarly, one can get

¢ n; n;j tkj+1
/0 [l (M) 13dr = > 6t — tr,)lla(Mu i, I3 < Z/t la(Mu13,) |13,
kj:O k)]:O kj

where n; is the number of scattering variables sent from agent j to agent ¢ during the time interval [0,¢]. Let’s

denote
t ~0 9 U tki +1 . 9
L imsolar =Y [ oo ar
0 k'r =0 tki

t N ) n; Th;+1 R 9
[ seliar =32 [ e, e
70 kj=0 " t;

let ; denote the number of scattering variables received by agent j during the time interval [0, ¢], then we have

Since

t n;
/O ot (n)|[5dr = D" 8(t — tr, — Tj) || a(Maa @i, )5 (109)

Note that due to the delay T;; from agent ¢ to agent j, we have n; < n;. Since U U; ( ) holds the last sample of
U]t(t) we have
03(t) = a(Mugy,), for t € [ty, + Tij, th, 41 + Ty,

therefore

t _ 9 ni tr, +1+Ti; R 9 ni thy+1 R 9
/ lot)|dr = 3 / la( i) |fdr = / la(M113i) ||y
JO ;=0 tki+Tij ;=0 " tk,



Similarly, since v;;(¢) holds the last sample of v;;(¢), we have
0;;(t) = q(Mug,), for t € [ty, + Tji, tg,41 + Tjil,

therefore
51 +17 Ji
[t mw-}:/ MMmmmw—E:/ Ja(0113, )3

Since n; > n; and n; > nj, we have

t t t t
[ sl = [spoliar+ [ el - [ ek = o

Moreover, based on the scattering transformation (52) and (53), we have

U (t) = q(Ma1Gr,) + aMas [y;s(t) — q(Ma1Gr,)], for ¢ € [ty,, tr, 1)
05 (t) = (M1 Gi,) + aMay [yis(t) — ¢(Ma1T,)], for t € [ty t 1),

sl =32 [

n;

i +1 - R ,
- Z /t {(1 —2aMy ta M22)||Q(M21yki)||2
ki=0""F

— (202M3, — 2aMa2)g" (MarGi,Jyj(7) + My 50|57

therefore

MQlyk WLCLMQQ [y]s( )_ Q(MQka H

Similarly, we can get

t n;j thj+1
[l =50 [ [0 - 200 + @03 a0t
k]‘ =0 kj

~ 2
— (202 M}, — 2aMy0)g" (Mo, i) + > M |yis (7) 3] 7

With M;; = My, we have

t t t t
[ sl = [Cspoliar+ [ el - [ el

U Ty +1
= Z/ [(QCLMQQ — a*M3)||¢(Ma1Tk,) HQ + (2a® M3, — 2aMas)q” (M1 Tk, )y;s(T)

k)’L:O tk

nj Tjt1
— @M )+ Y0 [ [2adter - 0203|003

- 2
+ (2a2M222 - 2aM22)qT(M21ykj)yis(7') - a2M222||yi5(7')||2} dr

with aMsy = 2, we can further obtain

t t t
%—/H MW—AH@vMW+AH%WMW—AH%vMM

Mari s (r) = 4|yss(7) 3] dr

tre, 41

ki

-3 /t 44"
ki=0 i
n; tkj 1

+ Z/t + [4‘1 (M1 3k, )yis (1) — 4| s ( )Hz}dT
k, =0

kj
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(110)

(111)

(112)

(113)

(114)



consider a storage function for the multi-agent system given by

N
VeMuY Vitg Y Vy

i=1 (z])EE G)
Ty +1
ES MH ZV —+ Z Z / MQlyk )y]S ||yJS )Hg} dr
i=1 k;=0" ki ]e/\/

where V; is the storage function for agent 4 such that V; = ul (t)y;(t), V¢ > 0. For t € [ty,, t,4+1), let
€;(t) = Muyi(t) — a(Mi1y,),
€(t) = M1 [yi(t) — Uk,
ke = Muiyk, — ¢(Muig,),
and one can see that €;(¢t) = €;(¢t) + M1y, — ¢(M11Yx,) = €;(t) + E,, for t € [t,, tx,+1]. So

N
My Z V, = Z Z / Miia Z y]s — q(Ma1 Y, )} MLH [5,-(7‘) + q(Mllﬂ/J\k,z)} dr
=1

=1 k;=0 JEN;

- Z Y /tk Ta Z [yys q(Ma1 Yy, )}T[a(f) + q(Mllﬁki)} dr

V:MHZV%Jrg Z sz
i=1 (i,9)€E(G)
N T
= Z a Z [yjs(t) - C](M21Z7ki)} [Ei(t) + (J(Mn?ki)}
i=1 jeEN;
il 2
+> ) a[qT(M211?k,¢)yjs(t) - ”yjs(t)HQ}
i=1 jeN;
N
= Z a[yjs(t) — q(M21Yk,) } &i(t Z Z al|¢(M21 ) yjs(t)Hg
i=1 jEN; i= 1]€N
N T
=33 ofus®) — a(Man)| [(t) + 21 Z 3 allg(Mar@i,) — w3 ()2
i—1 jEN, =1 jEN;
thus N
V<Y > allyis® — e, |@ @), + Z > allwis () — a(Mor@i) || |7
i=1 jeN; i=1 jEN;
N
- Z CLHQ MQlyk y]s ||2
i=1 jEN;
N
< Z CLHst( q(Mo1 Y, H l[€i(2)]]2 +Z Z 2BH6k HQ
i=1 jEN; i=1 jeN;

N
£ Lyett) - ai), - S S aflan) - .0

i=1 jeN; i=1 jEN;

34

(115)

(116)

(117)

(118)

(119)
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choose 0 < v < 1, then we have

N N
V< Z Z al|yjs(t) — q(Mar T, )| ,|I€:(8)]]2 — Z Z a(l — g)'YHyjs(t) - Q(Mmﬂk,‘,)Hg

z';l JEN; N ] =1 jeN: (120)
Y %H%HQ =30 > alt = ) = |lys(0) — (M)
i=1 jEN; i=1 jEN;
so of we can guarantee that
~ S iens (1= D |wss(t) — a(Maie)|| .
()], < . — , YVt e [t te,+1), 1 =1,2,...,N, 121
le@ll, < D ieN, l|wjs(t) — ¢(Ma17,)| WiorBecta), 4 (20
then we will have
. N a 2 N ﬁ 2
VY Y el - X 3 at - - il - el ez 0. (122)
i=1 jeN; i=1 jeN;
Note that (1-2) 9
Sien. (= Enlvsst) — aMmic)lly; T (e luss® — a0zl
ZjeM Hyjs(t) - Q(M21§ki)“2 B ZjeM ||yjs(t) - Q(M21??k1;)”2 (123)
1-2 _
_ | ‘ Nj)” S usalt) — a0,
o jen;
thus a sufficient condition for (121) to be hold is given by
1-8
|&:(@)|], < ( ?)7 |vjs(t) = a(M21Gi,)||gr ¥V ¢ € [th,sthig1), ©=1,2,...,N. (124)
Vil
(2

JEN;

Note that the triggering condition (55) actually assures that (124) is satisfied. Now integrating both sides of (122)
from tg to ¢, Vt > to, then we have

t N a ) t N B 2
Vie) = Vi) < [ 30 gallenliar = [ 303 alt = 50 - )luse(r) — o)

to j=1 jeN; 0 i=1jeN;
and
t Y a 2 t & B 2
0 < V(xt) < V(J]to) +/ Z Z %HEhHQdT - / Z Z (l(l - 5)(1 - 7)||y35(7—) - q(M21@\kj) 2d7—7
to ;1 JEN; Jlo j—1 jeN;
thus

t

N t N
>3 alt = D= Dlaln) - abdi)ar < V) + [ 303 el azs)

to i=1 JEM to i=1 ]EM

since we can arbitrarily choose ¢ > ¢y, (125) also indicates that

N N
> a(l- §><1 —N|[wis(t) = a(Man T3 < Vi) + > > %H%Hi, Vi > to. (126)

i=1 jeN; i=1 jEN;
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Moreover, because

Z Z V)Hyys( ) — q(Ma1Yy, )
i=1 jeN;
N 1-— 2
=>> o ( > llwss®) — a(Ma13i,)|l,) (127)
i=1 JEN;
a(l — g
> Yjs(t) — q(Ma21Ur, )
(; 7 2 o) = atati)],
so (126) also implies
al-5)1-9) /& 1 _ 2 al
[9j5(8) — a(Ma17,) ) < Vi(xy,) + 1|2, ¥ > to
N (; \M\% " ’ ;ZN 28
which further indicates
1— 5y N
\/a( 2) Z N Z |wjs(t) — a(Ma13,) ||
i=1 m JEN;

1 — 5 N
= \/a( . Z \/— Z [9js(t) — a(Mar T, )| (128)

]E./\f

N
AR D IE N

i=1 jeN;

929 VtZth

where N, = maxi{]/\f-\} or we can rewrite (128) as

NN,
55 a0 - a0V, < \/aa—%)a—w Ve

i=1 jeN;
59> e ﬁl— sl ¥ =0

i=1 jeN;

(129)

Since alMos = 2, in view of (52), we can conclude that
. ~ N ~
Jim [y;5() — q(Ma1G,)] = Jim 3 [05; () — a(M213,)]

where limy_, o ¢(M21yk,) could be considered as the latest transmitted scattering variable of agent ¢ by the time
t — oo. Moreover, since lim;_, oo 17;]. (t) = limy—0o ¢(M11¥r, ), Where lim; .o ¢(M11Yy,) could be considered as
the latest transmitted scattering variable of agent j by the time ¢ — oo, we have

. . . 1 R ~
Jim [Yjs(t) — q(ManTk,)] = lim = =[q(M113k,) — ¢(M213k,)]
—00 t—oo 2

replace it into (129), we can further get

al NN,
hm Z Z |a(M11Tk,) — ¢(M213,)|], < 2 3 V(zy,)
i= 1]@\/ a(l=3)(1—7) (130)
+ lim 2 |Ek: ||, ¥ t = to.
t—00 ;]gj\:/_ ay) 2
Note that R R
|a(M11Tk;) — a(Mo1Tk,)||, = || M1y (t) — €(t) — Muiyi(t) +&(t)]], (131)
> M)~ 0, - [0, - [ @) w20
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so we can conclude that

N

Jim >0 > @ —u, < tlggoM—llZ > lla(MuGr,) — a(MarBik,) |

i=1 jeN; i= IJEN
o fim Z > el + fim 77— Z > el
= IJEN i=1 jeN; (132)
q%ﬁgg Qﬁl_mmw%%;gmn2
NN,
+ lim — e - V(zy,)
me;ngm ¢1 VG

because the underlying information exchange graph is balanced, we have Zf\i 122jeN e;(¢ ||2 = Zf\il D jeN, Héi(t)HQ,
where

i=1 jeN;
in view of (124), we have

N N N
> 2 [E@ll, = 2 Willa®ll, < > Willla®ll, + 3 NIz [
- i=1 i=1 i=1

N N
S S @, < S 27 S [luis(0)
=1

N
— q(Ma1 )|, + Z NGl|[Zk

i—1 jEN; i JEN; =
thus
i S0 5 0l < 52 35 o) - 0 3 Wl
i=1 jEN; i=1 jeN;

3 NN, B NN,
<= 5)7\/ TR TR A 2)7\/ﬁ(2 1) Z illFedly 039
N

and we can obtain

Y3 I - Mﬂﬂmggwugm¢ e )
ﬂﬂM;§ 2 el -
gﬁ%ﬂwumwmwg@fgﬁ_ }g%E)Nm%m
4 _J\BI)JJJ\/ i _N_];f(l = VV (),

which shows that the output synchronization error of the studied multi-agent system is ultimately bounded by the
quantization error of agents’ latest transmitted sampled output information. The proof is completed |
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