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Abstract

We analyze the feedback passivity of a networked contrakgy$n which the control packets may be dropped
by the communication channel. Specifically, we considersardie-time switched nonlinear system with relative
degree zero that switches between two modes. At the instérga the communication link transmits the packet
successfully, the system evolves in closed-loop and thraggofunction is bounded below the energy supplied by
means of the control input. However, at the instants whenckgiadrop occurs, the system evolves in open loop
according to the free dynamics of the closed-loop mode. ésattime steps, the increase in storage function is not
necessarily bounded by the supplied energy. The literatmngassivity of switched systems only seems to consider
the case when all the modes are passive, which is not the ease\We prove that if the ratio of the time steps for
which the system evolves in closed-loop versus in open ledpwer bounded by a critical number, the system is
locally feedback passive in a suitably defined sense. M@medkis generalized definition of feedback passivity is
useful since it preserves two important properties of aaspassivity - that feedback passivity implies asymptoti
stabilizability for zero state detectable systems and tbediback passivity is preserved in parallel and feedback

interconnections.

Index Terms

Networked Control Systems; Switched Systems; Passivigdback Passivity; Zero Dynamics; Relative Degree

Zero; Discrete-Time Systems; Nonlinear Systems

I. INTRODUCTION

Networked control systems is now an established area ofr@segl]. In this paper, we consider
a discrete-time nonlinear process being controlled aceossmmunication channel that drops control

packets in a non-deterministic fashion [2], [3]. In partazywe are interested in analyzing the feedback
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passivity of a networked control system whose increase onagé function may be greater than the
supplied energy at some time steps due to packet drops. Wenaghat the process being controlled is
not passive, but is feedback passive, i.e., it can be madgvpabrough a suitable designed state feedback
control law. Due to the packet drops induced by the commtinicghannel, the networked control system
evolves in two modes. At the instants when no packet is drbppestate feedback control input is applied
through the communication link and the system evolves isedeloop. Because the process is feedback
passive, the resulting increase in storage function isy@vi@unded by the energy supplied by the control
input. However, at the instants when the communication whlaarases the control packets, the system
evolves in open loop according to the free dynamics of thgimmai process. At these time steps, because
the process is non-passive, the storage function may isereaen though no energy is being supplied by
the control input. The problem we are interested in is totifiesonditions on the packet drop frequency
so that the resulting switched system remains feedbackveass

Passivity is one of the most useful forms of dissipativityl as widely used for analyzing the stability
of interconnected dynamical systems [4]-[7]. Two progartihat make passivity particularly useful are
that (i) passivity implies asymptotic stability for zeratd detectable (ZSD) systems using feedback [7],
and (ii) both negative feedback and parallel interconoestiof passive systems are passive. The classical
notion of passivity has been extended to consider systertis delays [8], [9], event-triggered systems
[10], switched systems [11], and hybrid systems [12]-[JA]relaxation of passivity is the concept of
feedback passivity [15], [16]. A feedback passive systemds necessarily passive for every possible
input. However, it is possible to construct a control lawttisaa function of both the state and an external
input, such that the system is now passive with respect sekiernal input [16]-[18].

In the framework that we are interested in, because of th&gbadrops, the process evolution can
be modeled as a switched system. While results are avaifablpassivity of switched systems [11],
the available literature seems to only consider switcheslesys in which all the modes are individually
passive. In our problem, this framework does not hold. Thmmeantributions of this paper are 1) to extend
the concept of feedback passivity to such a discrete-tinméimear switched system, 2) to show that if the
frequency of the time steps at which the system evolves im dpap is bounded, the networked control
system is locally feedback passive, and 3) to prove that tdglizability and compositional properties
of passivity are preserved under this generalized defmifidne closest work to our presentation is [11]

from which we borrow the concept of allowing the storage fiorc of switched systems to increase



when a particular mode is inactive. However, unlike [11], e not assume every mode of the system

to be individually passive. Also related are [19], [20] tleansider the generalized asymptotic stability of

nonlinear dynamical systems where the Lyapunov functiomois-increasing only on certain unbounded

discrete time sets. Unlike the stability analysis in theseks, passivity analysis is complicated by the

fact that passivity is an input-output property and bothitimuts and the outputs are time varying. Due

to this difficulty, we analyze the passivity properties of switched system based on zero dynamics ([6],
[15], [16], and in particular, [18]) which is the internal mgmics of the system that is consistent with

constraining the system output to zero. Note that a dis¢@ie nonlinear system can be rendered passive
only if it has relative degree zero [16], hence we assumettieprocess has relative degree zero.

The remainder of the paper is organized as follows. In Sedtiowe define the problem framework.
Section Il provides the main results of this paper. SedtibA analyzes the passivity of the zero dynamics
of the process. Section IlI-B investigates the feedbackipig of the switched system based on the results
from zero dynamics. Section IlI-C discusses the stabilizgtand interconnections of feedback passive
systems. We give two examples in Section IV and conclude #pepin Section V.

Notation: An m-dimensional real vector is denoted BYy'. The space of nonnegative real numbers
is denoted byR*. The space of positive integers is denotedZby. By a smooth vector field, we mean
a field that is inC*°. Bold-face symbols are used for vectors. In particular, $sicalarm has value zero,
we denotem = 0; while if a vectorm has value zero, we denota = 0. The Kronecker delta function

is denoted by,.,, which is0 if » # s and 1 otherwise.

[I. PROBLEM FORMULATION

Consider a discrete-time nonlinear system described bydation

x(k = f(x(k),u(k
(k+1) = f(x(k), u(k)) 1)

wherek € Z7" is the time indexx(k) € R" is the statey(k) € R™ is the output, andi(k) € R™ is the
control input. Bothf : R” xR™ — R™ andh : R" xR™ — R™ are inC*. All considerations are restricted
to an open seK x U : X C R", U C R™ which is a neighbourhood of the origkt = 0, u* = 0. Let the
origin be an isolated equilibrium point of (1) such th&0,0) = 0, ~(0,0) = 0. System (1) is assumed
to be locally zero state detectable (ZSD) [21]. We also asstimat the system has local relative degree

Oh(x,u)

zero for all the outputs atx*, u*) = (0,0), i.e., = is non-singular [18]. This is a reasonable

(x*,u*)



assumption because as shown in [16], a discrete-time reailigystem can be rendered passive if and
only if it has relative degree zero and has passive zero dipsam
Definition 2.1: ([16], [17]) A system of the form (1) i$ocally passivef there exists a positive definite

functionV : x — R™*, called thestorage functionsuch that

V(f(x(k),u(k))) — V(x(k)) <u'(k)y(k), vx(k) € X,u(k) €e U,k € Z". (2)

We assume that process (1) is not passive and hence openretgble; however, if the contral(k) is
generated by a suitable state feedback control, it can Imedupassive. In other words, we assume that
(1) is locally feedback passive.

Definition 2.2: ([15]-[18], [23]) A system of the form (1) isocally feedback passivié there exist a
positive definite storage functiori : x — R* and a function)(x, v) : X x U — U which is inC*> and
locally regulaf, such that for any sequende (0), v(1),---} (with all v(j) € U), the system evolving

with the control inputu(k) = n(x(k), v(k)), Vk, satisfies the inequality
V(f(x(k), n(x(k), v(k))) = V(x(k)) < v'(k)y(k), ¥x(k) € X, v(k) € U,k € Z*. (3)

Now assume that process (1) is controlled across a comntigmcaetwork that erases some of the
control packets transmitted across it. At the instants viherpackets are successfully received, the system
evolves as described in (1). We denote the system as evaitvivigde 1 at these time steps. At the instants
when the channel erases the packets, we assume for coms®tdrat the actuator applies zero control

input, so that the system evolves as

x(k+1) = f(x(k)0)
y(k) = h(x(k), 0)

(4)

We denote the system as evolving in Mode 2 at these time S$teps thatx* = 0 is an isolated equilibrium
for Mode 2. Also note that (4) is merely the free dynamics ofddd withu(k) = 0, Vk. If Mode 2

is active at timek, the storage functio’ (x(k + 1)) may be larger thai’ (x(k)) even though no energy
is being supplied through the control input. We denote thdcted system evolving as in Mode 1 and
Mode 2 byS. The mode switching sequence f8ris defined by the specification of the valdé:) for

IRecent work [22] relaxes this assumption by using the calglfierential/difference representation (DDR) of thetsys. However, this
requires the existence of a contnalsuch thatf(x, u) is invertible. Extensions of our results to such a scenarieft as future work.
2A nonlinear state feedback control lay(x,v) : X x U — U is locally regular if% is invertible for all (x,v) € X x U.



everyk € Z*, whered(k) € {1,2} is the mode active at timg. Consider the evolution of syste
overT' time steps. Letr(7') denote the total number of uncontrolled (open loop) timpstehensS is
in Mode 2 during this time period, aril — 7(7") the total number of controlled (closed-loop) time steps

whens is in Mode 1. Let the ratio between the controlled time staps the uncontrolled time steps be

r(T) = T;(TT()T). When the context is clear, we will abuse the notation angegs the dependence of
7(-) andr(-) on T. Without loss of generality, the system is assumed to staMade 1 from time step
k = 1. If this is not the case, we can shift the time axis by definingea time variablel’ = kq + & with
an appropriately defined initial conditidt.

The introduction of Mode 2 requires a new definition of feezkbpassivity. To see why this is true,
let us consider the extreme case whkh) = 2 identically. In this case, the set of allowed control inputs
is only u(k) = 0 and no energy is supplied to the networked control systerns;Tfor the system to

be feedback passive according to Definition 2.2 would regthie existence of a positive definite storage

function V : x — R* and the control inputi(k) = v(k) = 0 such that

V(f(x,0) —V(x) <0, Vx(k) € X,k € Z".
However, such a storage function would be a Lyapunov fundio the process given by Equation (1) in
open loop. Since Mode 2 is unstable, such a storage functies dot exist. Thus, the switched syst&m
is not feedback passive. However, it is intuitive to consitthe system to be feedback passive as long as
Mode 2 occurs sufficiently infrequently. To capture thisuition, we propose new generalized definitions
of local passivity and local feedback passivity. Before veetltht, we need to consider one more aspect of
the problem, which is that the skt of allowable controls may differ at different time steps.particular,
in our problemu(k) (and hencer(k)) can take any value in the setif d(k) = 1, whileu(k) = v(k) =0
is the only value possible (k) = 2. We introduce this notion formally.

Definition 2.3: Consider a switched systeshevolving as in Mode 1 given by Equation (1) and Mode
2 given by Equation (4) in which the control inpulk) € U(k) at any timek. The system idocally
passiveif there exists a positive definite storage functign x — R* such that the following passivity
inequality holds:

V(x(T)) -V (x(1)) < g u' (k)y(k), vx(k) € X,u(k) € U(k),T € Z". (5)

~

B
Il

Definition 2.4: Consider a switched systefevolving as in Mode 1 given by Equation (1) and Mode



2 given by Equation (4) in which the control inpulk) € U(k) at any timek. The system idocally
feedback passivé there exists a positive definite storage functibh: x — R* and a regular state

feedback control law

wh) - { n(x(k),v(k),7: X x U = U if d(k) = 1 ©
v(k) =0 if d(k) = 2

such that the following passivity inequality holds:

!

V(x(T)) - V(x(1)) < 3 v (k)y(k), vx(k) € X,v(k) € U(k), T € Z™, (7)

1

e
I

whereU(k) = U whend(k) = 1 andU(k) = 0 whend(k) = 2.

Note that a system that is locally passive (respectivelgllpdeedback passive) according to Definition
2.1 (resp. Definition 2.2) remains passive according to Defm2.3 (resp. Definition 2.4). However, the
converse is not necessarily true. It is this freedom thalt alibw us to define the switched systefhas
feedback passive.

With these definitions, we answer two questions in this papest, we prove the intuitive result that
if the system is in Mode 2 only infrequently, the switchedtsysS should be expected to remain locally
feedback passive. More precisely, we prove that there isiteatrratio »*, such that if for everyrl’,
r(T) > r*, then the system is locally feedback passive. Secondly,hees ghat this definition preserves

the following two properties of classical passivity:

. A feedback passive system is asymptotic stabilizable § Z$D.

. Parallel or negative feedback interconnections of feekllpassive systems are feedback passive.

[1l. M AIN RESULTS
A. Passivity Analysis for Zero Dynamics

Notice that there is considerable freedom in choosing tinetfan n(x(k), v(k)) in Definition 2.2 for
Mode 1 as defined by Equation (1). We restrict the class oftfons that are allowed to further satisfy
the relationv (k) = h(x(k),n(x(k),v(k))). By the implicit function theorem [18], [24], such analways
exists since the system in (1) is assumed to have relativeedegro and is regular. Denote the control

inputs so obtained bw¥*)(x(k)). For any given bounded vector sequendé) € U, the corresponding



control inputsu¥®) (x(k)) € U are bounded. Under these inputs, the sysiin Mode 1 evolves as

x(k + 1) = f(x(k), 0" (x(k))) £ Y0 (x(k)) ®)
y(k) = h(x(k), 2"® (x(k))) = v(k)
This is referred as the feedback transformed system witbdhtroluv*) (x(k)). Becausé:(x, u) (0.0
x*,u*)=(0,0
=0, (x*,v*) = (0,0) remains an isolated equilibrium point of (8), i.¢Y*) (x(k))‘ = 0. Note

(x*,v*)=(0,0)
that the evolution in Mode 2 is still governed by (4). Dendte switched system defined by Equations (8)

and (4) byS;.
In the particular case whey(k), and hencer(k), is identically zero, let the control inputs’® (x(k))

be denoted bya(k). Underu(k), Mode 1 evolves as the zero dynamics of the closed-loop rsy&te

x(k = f(x(k),u(k)) & f(x(k
{<+1> Fx(k), a(k)) 2 F(x(k)) o

y(k) =0
Denote the switched system defined by (9) and (4SasSince the systens in Mode 1 as given by
Equation (1) is locally feedback passive, the zero dynarfof the closed-loop mode are also locally
passive and hence stable (see [16, Theorem 7.3] and [15, rReéh$). Further, since for systeis,,
either the input (in Mode 2 which evolves as (4)) or the outfimtMode 1 which evolves as (9)) is
identically zero at every time step, Definition 2.3 implikat systemsS, is locally passive if there exists

a positive definite storage functidri(x(.)) such that the following inequality holds:

S

V(x(T)) — V(x(1)) < - u'(k)y(k) =0, vx € X,T € Z". (10)

1
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Note that the above inequality holds for everft ) € X with d(1) = 1. From now on, we will additionally
assume that the determinant of the Hessian matrix of thaggoiunctionl’(x) in (10) atx = 0 is non-
zero.

Our first result shows that there is a lower bound on the frequef the steps at which syste&
evolves in closed-loop as defined by Equation (9) that gueess, to be locally passive.

Lemma 3.1:Consider the switched systef defined by Equations (9) and (4). Assume there exist a



positive definite storage functio¥i(x(-)) and constantg > 1 and0 < ¢ < 1 such that

V(f(x(k),0)) < (V(x(k)) (11)
V(f(x(k))) < oV (x(k)).

If for any time T' € Z*, the ratior(T") satisfies

~(T) >_(77——1)h1§

12
“In¢—-Tlno’ (12)

and x(7') € X irrespective ofd(0),---,d(T" — 1), then systemS, is locally passive according to
Definition 2.3.

Proof: For any timeT € Z*, (11) implies thatV (x(T)) < o7=7¢"'V(x(1)). Since (12) implies
ol=7¢""1 < 1, we obtain that/(x(T)) < V(x(1)) for any T, if the conditions (11) in the theorem are
met. From Definition 2.3, systei$, is locally passive. [ ]

Remark 3.1:The choice of¢ ando determines how conservative the condition (12) is. The mmimn
¢ ando that satisfy the inequality (11) will result in the least servative bound.

Remark 3.2:Note that the right hand side of (12) is an increasing fumcbbd7'. Thus, the condition
on the frequency of Mode 2 becomes progressively less siningNote also that the condition does not
require a constant ratio(7").

We now prove an intuitive result on the effect of increasifi@).

Corollary 3.1: Consider systend, defined by Equations (9) and (4) with the conditions (11) fein
satisfied. If the system is locally passive with a rat{@), it is locally passive with a ratie’(7") > r(T').
Thus, decreasing the frequency of uncontrolled time stepsepves passivity.

Proof: At time T' € Z™", denote the number of time steps for which the system evalpes loop
with the ratior(7") by 7(r,T) and with the ratior’(7") by 7(r/, T). Conditions (11) yieldV' (x(T")) <
oT=7r DT D=1/ (x(1)) and V (x(T)) < o770 T¢70T)=1Y(x(1)). Since the system is locally passive
with ratio r(7T), o7—"T)¢7(nT)=1 < 1, The proof follows by noting that (', T) < 7(r,T) and thus,
g T D) er(r D=1 o GT=r(rnT)r(nT) =1 < 1 -

Remark 3.3:Now define the sequence of time stefds} such thatk, = 1 and k; = the least time>
k;—1 such thatl(k; —1) = 2 andd(k;) = 1. Assume systens, is locally passive in the time peridd,, k]
with 7 uncontrolled time steps and = 7' — 7 controlled time steps. According to Remark 3:27)

increases with" in (12). Therefore, in the time peridd;, k;.1], we must have’ < 7 uncontrolled time
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steps and’ > t. controlled time steps. Following similar derivation of Gbary 3.1, sinceS; is locally

passive in the time periofko, k;], it is also locally passive in the time perigk, k;1].

B. Feedback Passivity Analysis for the Original System

We now prove the main result of the paper.

Theorem 3.1:Let the switched systerd, defined by Equations (9) and (4) satisfy the inequalitieg (11
and (12) such thas, is locally passive. Furthermore, let the switched systerdefined by Equations
(1) and (4) evolve from the same initial condition and witle game mode switching signal &s. Then
systemsS is locally feedback passive.

Proof: We begin by recognizing that for systesh if d(k) = 1, the controlu(k) = n(x(k),v(k)) can
take any value in the sdf; while if d(k) = 2, thenu(k) = v(k) = 0 identically. This implies that for
systemS to be locally feedback passive according to Definition 2.4, veed to prove that there exists
a positive definite storage functidni(x(k)) and a feedback control law(k) as defined by Equation (6)
such that the inequality (7) is true in a neighborhoodof, v*) = (0, 0).

To prove (7), we proceed as follows. For the cas¢) = 0 and {v(k)}]-] = {0}, the inequality (7)
holds trivially. For other cases, whelfk) = 1, we choose that guarantees(k) = h(x(k),n(x(k),v(k)))
so thatu(k) = av®)(x(k)). Whend(k) = 2, we haveu(k) = v(k) = 0.

Since S, is locally passive, there exists a positive definite storfametion V' (x(.)), such that for any
TeZ, x(-) e X, V(x(T)) -V (x(1)) <0, when the state evolves according to the switched sysiem
with the initial conditionx(1). Consider the storage functidri(x(.)) = aV (x(.)) for a constant; > 0
for the switched systen¥ with the same initial conditionx(1) and the mode sequence &s We prove
that with a suitable choice of the constantthis storage function guarantees (7). Since the controls
u(k) = w®(x(k)) are being usedy(k) = v(k) at every time wheni(k) = 1. Thus, proving (7) is

equivalent to proving that the following inequality holds

V(D) -V(x(1) < Y vi(kv(k), vxeX,veUTeZ" (13)
k:d(k)=1
k<T—1

Define the function

o(x(k), v(k)) = VT (k)v(k) + V(x(k)) = V(F*™ (x(k) = ) o} (k x(k)) = V(O (x(k)). (14)

=1
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We use the following property of(x(k),v(k)) that is proved in Lemma A.1 in the Appendix: if :
d(k) =1, ¢(x(k),v(k)) has a local minimum atx*, v*) = (0,0) with value 0. Therefore, for the case
whenx(k) = v(k) = 0 for k£ > K such thatd(k) = 1 Yk < K, the inequality (13) holds trivially.

Except the above trivial cases, let us define

i ppy e OO V()
a(x(1),{v(k)},=;) = i (¢ — D Zk};d(k):2 V(X(k))va <YAR (15)

<T-1

Note thata is a function of the initial conditionc(1) and given control sequende(k)}; -] minimized
over the horizonl'. Because the storage functidn is positive definite and(k) # 0 for at least one
k : d(k) = 2 (except the trivial cases], > 1, and the termy has a local minimum zero &0, 0), both the
numerator and the denomination are greater than\?€re Z*. Therefores is guaranteed to be positive.

We now choose: in the interval(0, a) so that the following inequality is satisfied,

aC=1) 3 VEE)+ 3 [V - V)] < Y TRk, @8)
e o
Now, if & is such thati(k) = 2, systemsS andS, evolve in an identical manner as given by Equation

(4). From the assumption (11), we obtain at these time steps

V(f(x(k),0)) = V(x(k)) = a (V(f(x(k),0)) = V(x(k))) < a(¢ = 1)V (x(k)) 17)
so that
> [VUek). 0) = Vix(k)| <al¢—1) Y VIx(k). (18)
k:d(k)=2 k:d(k)=2

Now note that

> VUG 0) = V)| + D0 VPR — V(x(k)| = V(x(T)) = Vix(1)),
o, o

so that according to the inequalities (18) and (16), we have

V() -V(x1)< Y v(k)v(k) (19)
el



12

if a is chosen in the interval0, min(a,a)) wherea is defined in Lemma A.1 in the Appendix. Thus,

systemsS is locally feedback passive. [ ]

C. Stability and Interconnections of Feedback Passiveefyst

We now prove that the definition of feedback passivity we hat®duced in Definition 2.4 preserves
some of the important properties of classical feedbackiyass

Theorem 3.2:If the switched systend defined by Equations (1) and (4) is locally feedback passive
according to Definition 2.4 and locally zero state deteetabiien the system is locally asymptotically
stabilizable with a suitable state feedback control law.

Proof: Since Systens is locally passive, we can follow the proof of Theorem 3.1 aodstruct

a control lawu(k) as defined by Equation (6) that guarantees that foraity € U, y(k) = v(k) if
d(k) = 1 and the inequality (13) holds.

Now, we choosev(k) = 0, Vk. Thus, the control law is given by

1

u(k) =

)

n(x(k),0) if d(k)
0 ifd(k)=2

so thaty(k) = 0 if d(k) = 1. In this case, the inequality (13) reduces to

V(x(T)) = V(x(1)) <0, ¥x(-) € X,VT.
In other words, there exists a functigrand a positive definite storage functidi{x(-)) = aV (x(-)) such
that the inequality (13) holds.

Recall the sequence of time stepk;} such thatk, = 1 and k; = the least time> k;,_; such that
d(k; — 1) = 2 andd(k;) = 1. Choosingl’ = k; yields in particularV (x(k;)) — V(x(1)) < 0,Vx(-) € X
with x(1) € X andd(1) = 1. Following Remark 3.3, we can repeat the same argumeningtdrom time

k; with x(k;) as the initial condition. Thus we obtain the series of inditjea
V(x(kiy1)) — V(x(k) <0, Vi =0,1,---,vx(-) € X.

Since Mode 1 is active infinitely ofted;} is an infinite sequence. Thén(x(-)) is a Lyapunov function
for systemS which implies that the system is Lyapunov stable with theegizontrol law.
The asymptotic stability then follows from ZSD. Observetthd the trajectories of the closed-loop

system eventually approach the invariant et {x € R" : V(x(k + 1)) = V(x(k))}. Sincey(k) =0
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and by ZSDlim,_,., x(k) = 0. The system is thus locally asymptotically stable with tleg control

law. [ |
Theorem 3.3:If two switched nonlinear systen&®' andS? are both locally feedback passive according

to Definition 2.4, then their parallel and negative feedbaxtkrconnections (as defined in Figure 1) are

both locally feedback passive.

|
| Sp (s2) uz =0 (s2) ! v (s1) e (s1) Sf :
Vi BN y2 | : O SN Y1
: o—> s? ‘ Vi oo st ‘
n2 ——O 7 —o0
[ r» uz = n2(x2, va) : — " g = n1(x1,v1) :
| B | B ‘
| l X1 : x2 ‘ :
: L» ” ur = n1(x1, v1) | uz = n2(x2, v2) . |
v |V t Y 2 < O( )
| — ! ) m st yi + y : ’ s2 (s2) 2+ r2 :
| o———— 0 > ——
| u; =0 + ‘ us =0 vz + !
Lo . _______ !
(@ (b)

Fig. 1. (a) Parallel, and (b) negative feedback intercotioes for two locally feedback passive switched nonlinggstemsS' and S2.
Note that the switches marked with a same notatief, i = 1 or 2 switch simultaneously.

Proof: If SystemS* (respectivelyS?) is locally feedback passive, then there exist a control law
w (k) = m(xq(k), vi(k)) whend; (k) = 1 andu; (k) = 0 whend; (k) = 2 (resp.us(k) = na(x2(k), vo(k))
when dy(k) = 1 anduy(k) = 0 whendy(k) = 2) and a positive definite storage functidn(x;(-))
(resp.Va(x3(+))) such that the inequality (7) is satisfied for any sequem@® € U(k). For the parallel
interconnection, the extrinsic control sequendé) is the same for both systems and the outp(it) =
y1(k)+y2(k). Consider the control law (k) = [u] (k) u} (k)] and the storage function(x; (k), x,(k)) =
Vi(x(k)) + Va(x(k)). For any timeT € Z*, we haveV (x(T)) — V(x(1)) = (Vi(x(T)) — Vi(x(1))) +
(Va(x(T)) — Va(x(1))) < ST2ivT(R)ya(k) + ot vT(k)ya(k) < S0 vT(k)y ().

Similarly, for the negative feedback interconnection, tiemtrol inputs and outputs are ag(k) =
vi(k)+y2(k) andry(k) = va(k)—y1 (k). Consider the control lawi(k) = [u] (k) uj(k)]" and the storage
functionV (k) = Vi (k)+Va(k). For any timel" € Z*, we haveV (x(T)) -V (x(1)) < 3.1 (eT(k)y1 (k) +

ry(k)y2(k)). m
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IV. EXAMPLES
A. Example 1

In this example, we passify a nonlinear switched system Ipjyam a regular state feedback control

law across a network with packet drops. Consider a systerheofdrm

zi(k+1) = —0.32%(k)xo(k) + 1.229(k) + u(k)
zo(k+1) = 0.82z(k) —u?(k) (20)

y(k) = 0.7zz(k) + u(k),

with initial statesz;(1) = 0.2,25(1) = 0.1. Note that system (20) is locally ZSD and has relative
degree zero. As discussed earlier, we constrgik), v(k)) by imposingv(k) = y(k). This leads to
u(k) = n(x(k),v(k)) = v(k) — 0.7x2(k). The resulting feedback transformed system has a passive
zero dynamics withv(k) = 0, and hence the system is feedback passive for any possible For
the purpose of numerical illustration, we choose the exsleimput asv(k) = 0.35z5(k), which leads

to the controlleru(k) = —0.35z5(k). The evolution of the system in Mode 2 is given by Equation (4)
with (k) = 0. In Mode 1, the transformed dynamics and the zero dynamicsystem (20) can be
obtained as in Equations (8) and (9). Given the zero dynamieschoose a quadratic storage function
V(x(k)) = x(k)"Px(k) = 23(k) + 0.523(k). We can verify that the determinant of the Hessian matrix of
V(x(k)) atx(k) = [0 0] is not zero. The parameters in the condition (11)@re 2.88 ando = 0.5516.
According to (12) then, choosing the rati¢T") to satisfy

1.0578(T — 1)
T >
") 2 10578 4 059497

(21)

would guarantee system passivity. This condition is satisfe.g., by a periodic system in which at every
third time step (i.e., att = 3,6,9,---) the system is in Mode 2. However, the system need not be
periodic to satisfy (21). If the system starts in Mode 1, they communication protocol that guarantees
that out of every 3 consecutive control packets, at most aaekgi is not delivered would guarantee
passivity. Thus, another way to interpret the result is tp thet the maximum allowable transmission
interval (MATI) [25], [26] is 2. The storage functioir (x(k)) for the transformed system is chosen as
0.32V (x(k)) with @ = 0.49 anda = 1.9996.

More insight can be obtained if we consider the system to aipeover a finite horizon. Consider
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Fig. 2. (a) Passivity check for the switched system in theetinterval[1, 20] according to classical passivity Definition 2.2, (b) Pasgiv
check for the switched system according to the generaliegedifack passivity Definition 2.4, and (c) State dynamic$efswitched system.

the system operation frorh = 1 to 20. We consider the system to be in Mode 2 at time steps
3,6,10,13,16,19 as shown in Figure 2(a). Thus, the classical feedback pgssirequality (3) does not
necessarily hold at these time steps. Figure 2(b) showsatresponding generalized feedback passivity
inequality (7) for the system. We can see that unlike thesatatcase, the storage function is now allowed
to be greater than the supplied energy instantaneouslyeVewthe general passivity inequality is satisfied
at every time till'T. Figure 2(c) shows the evolution of the state dynamics ofslwéched system. If
we choose the control to be(k) = —0.7z,(k), since the system is locally ZSD, it can achieve locally

asymptotic stability.

B. Example 2

Consider the following nonlinear mass-damper-springesyswhich is controlled through a network
with packet drops. A negative damper is used so that the myist@on-passive and open loop unstable.

We use the proposed method to passify and stabilize thensyste

r1(k+1) = x1(k) + Txo (k)

ok +1) = —%m(k) + (1= S0 sin(an (k) 2a(b) + %u(k:)

m

y(k) = 185(k) + u(k),

where z; and xz, are the displacement and velocity an¢k) is the force. We set the sampling period
T = 0.1s, massn = 0.5kg, stiffnessK = 1N/m, viscous damping coefficierat= 3N - s/m and initial
conditionsz; = 0.2m, 2z, = —0.1m/s. We choose the controller by imposirfg(x, u) = f°(x). The

resulting controller isu(k) = —5x; (k) — 1024 (k) with v(k) = 0 which renders the system locally passive
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and stable. The evolution of the system in Mode 2 is given gufgé 3 whenu(k) = 0. We choose a
storage functior// (x(k)) = 10022+ 0.0123. We can also verify that the determinant of the Hessian matri
of V(x(k)) at x(k) = [0 0]" is not zero. The parameters in condition (11) are- 1.23 and o = 0.92.
We consider the system to operate frém= 1 to 30 and withd(k) = 2 at time stepst = 2, 11, 20, 29.
Figure 3(a) shows the corresponding passivity inequabity Mode 1 and 2, respectively. Figure 3(b)
shows the generalized passivity inequality according t&igure 3(c) shows the evolution of the state

dynamics of the switched system. Both states are locallyjnpsytic stable at the origin.

-0.5 —V(k+1)-V() [
-==0

5 10 15 20 25
k
Mode 2

V(k+1) - V(k)
-0 st
0 — A -]

5 0 15 20 2 5 0 15 20 2
k k
@ (b)

Fig. 3. (a) Passivity check for Mode 1 and 2 according to atas$eedback passivity definition 2.2, (b) Passivity chéokthe switched
system according to the generalized feedback passivitpitlefi ??, and (c) State dynamics of the switched system.

V. CONCLUSIONS

We analyzed feedback passivity for a class of discrete-smiched nonlinear systems that switch
between two modes - an uncontrolled mode in which the systastvess open loop, and a controlled
mode in which a control is applied to the system. This sitmats of interest in, e.g., networked control
systems where the communication network can erase cordodleps transmitted to the plant. We give a
new generalized definition of feedback passivity for suclysiesn and show that if the ratio of the time
steps for which the system evolves closed-loop versus the steps for which the system evolves open
loop is bounded above a critical ratio, then the system iallpdeedback passive in this sense. Moreover,
we show that this generalized definition is useful since ésprves two important properties of classical
passivity - that feedback passivity implies asymptotib#izability for zero state detectable systems and

that feedback passivity is preserved in parallel and fegkdlb@erconnections.
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APPENDIX

Lemma A.1:Consider the set up of Theorem 3.1. Whien d(k) = 1, the function (14) has a local
minimum at(x*, v*) = (0,0) with value 0. Besides, there exists a constant- 0 such that the storage
function V (x(k)) equals toaV (x(k)) with a € (0, ).

Proof: For notational convenience, we suppress the dependenkebthe terms in (14) and denote

the pair (x*, v*) by (0,0). Thus, consider the first order derivatives @(fx,v) at (0,0). We have for

/L:l’ N, 7’:1’... ,m,
96(x, v) RES Z": oV 8f,‘[(x)]
axi x*=0,v*=0 -axi h=1 af;l/ axl x*=0,v*=0
09(x,v) ~ OV Ofy (%)
=20 =) o=
a’U,» x*=0,v*=0 L h=1 8fh 8vr x*=0,v*=0

The storage functio (x(k)), and hence the functiol(x(k)) = aV (x(k)), has a local minimum at
x* = 0 becausél/ is positive definite withV/(x) = 0 if and only if x = 0. Moreover, the origin is an

isoalated local equilibrium of the system; thusxit= v* = 0, f¥*)(x(k)) = 0. Combining these facts,

we see that
0o(x,Vv) 0. i=1.-.n. 09(x,V) —0, r=1,---,m
ox; ov,
x*=0,v*=0 x*=0,v*=0
Next, we check the elements of the Hessian matrix(©f, v) at (0,0). We have fori,j =1,--- ,n and
rs=1,---,m,
9%6(x, V) v e o aflv]
al'jaxi =0 v =0 0%8& him1 8f,‘l’3fl" al'l 81']' 00

Poxv)| [y OV 0o
v, 0, Py afyofy ox; ov, e 0ve0

x*=0,v*=0

82¢(X, V) B " o’V 8]5}‘[ 8]‘?
90,00, =2 ;1 Ofyofy ov, ov, |
» x*=0,v*=0

x*=0,v*=0
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Denoted(x(k)) = ¢(x(k),0) = a (V(x(k)) — V(f°(x(k)))) , S0 that

P*¢(x, v)
8@8@

_ Po(x)
n 61’383}2

x*=0,v*=0

(22)

x*=0

The zero dynamics (9) are locally passive and hence satisfypissivity inequality (10). Because
Fo(x(k)) = f(x(k)), the term¢(x(k)) has a local minimum at* = 0. By assumption, the determinant
of Hessian matrix of the storage functidhx) at x* = 0 is non-zero, we obtain that the eigenvalues of
the Hessian matrix er(x) at x* = 0 are all positive. Denote these eigenvalues\pyvi = 1,2,---  n.
Furthermore, the Hessian matrix 6(x) at x* = 0 is symmetric and can be diagonalized. Thus, with an

appropriate choice of coordinates, the Hessian matrix(af v) at (0,0) can be evaluated to be of the

form
a)\l s 0 abll cee Cl,blm
0 - a\, ab,; e abym
(23)
abn s CLbnl 2+ acyp v aCim,
abyy, 0 aby,  acm s 24 acmm
Now, we apply [18, Lemma 12] which states that for> 0 andVa = (0,a), @ = min; aj where
2901\, —
a;“-‘:min{l, ! E},jzl,---,m (24)
a4+ oy
with0 <e< landa, [ =1,---,j being some constants relatedXg b; andc¢,;, i =1,--- ,n, r =
1,---,4, 1 = 1,---,4, the determinant of matrix (23) is greater than zero. Sgl&stcriterion now

readily yields that the Hessian matrix of(x,v) at (0,0) as evaluated in (23) is positive definite.
Therefore,¢(x,v) has a local minimum at0,0). Because the storage functidn is positive definite

and f¥®) (x(k)) =0, we obtaing(x, v) = 0 at (0, 0). |

x*=0,v*=
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