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Introduction 
 
Autonomous vehicles have certainly captured the imagination of everyone in recent years. The 
promise of reducing or even eliminating accidents via autonomy is very appealing indeed. 
Certainly, autonomy in engineered systems is not a new concept; and definitely it is not a new 
concept in organizations, in society, in biology. Note that automatic pilots for aircrafts and ships 
that increase the degree of autonomy of the system, have been operating very successfully for 
many years-the first autopilot for aircraft was introduced in 1912. These are examples of 
outcomes of the Quest for Autonomy, a pervasive theme in engineered systems through the 
centuries starting even earlier than Ktesibios’ waterclock with its feedback mechanism in the 3rd 
century BC and continuing strong today. It seems that we always wanted to build things that did 
more things by themselves. Adding to traditional control systems advanced sensing and 
incorporating decision making from areas such as AI is a way to increase substantially the level 
or degree of autonomy of a system. Control systems should be seen as the cornerstone of 
autonomous dynamic systems. 
 
When people refer to autonomous systems they often mean different things. It is important to be 
more precise and agree upon a common definition such as: If a system has the capacity to 
achieve a set of goals under a set of uncertainties in the system and its environment, by itself, 
without external intervention, then it will be called autonomous with respect to the set of goals 
under the set of uncertainties. For the same set of goals, the larger the set of uncertainties the 
system can handle, the higher its degree of autonomy. The lower the needed external intervention 
by humans or other systems to achieve the goals under the uncertainties, the higher the degree of 
autonomy. So, the level of autonomy depends on both, a measure of the set of the goals that are 
being accomplished and a measure of the set of uncertainties present. Specifically, {Measure of 
the Set of Goals} x {Measure of the Set of Uncertainties} = L, the level of autonomy. This 
definition allows the comparison of the autonomy levels of different systems. These issues are 
discussed in detail in this paper. 
 
The present paper focuses on measures of autonomy with emphasis on comparing levels or 
degrees of autonomy.  The definition of autonomy used here was first presented in [1] and 
further discussed in [2] where the main ideas behind defining levels of autonomy were 
elaborated upon. It should be noted that the ideas of defining autonomy using sets of goals and 
uncertainties have appeared in the writings of the author, published in the open literature, much 
earlier; see for example [3]-[5]. Autonomy in engineering systems and its relation to intelligent 
behavior was discussed in the task force report [6]. Details of defining levels of autonomy were 
discussed in a paper draft [7] which was circulated and commented upon by colleagues. These 
ideas were also presented in a keynote address at the Mathworks Research Summit in early June 
2019. 
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The purpose of the present paper is to define autonomy, describe concrete ways to talk about 
autonomy and levels of autonomy and provide quantitative relations. 
 
We start the discussion with our definition of autonomy. The interested reader may want to read 
materials from [2]-[7] and consult the references therein which describe early research (in the 
late 1980s to mid 1990s) in combining control systems with intelligent methods from artificial 
intelligence and machine learning to design highly autonomous intelligent control systems. For 
additional discussion of autonomy and its levels see, for example, [8] where the definitions 
introduced correspond to the definitions in this paper in that they use task-specific goals to be 
achieved by the system and refer to needed outside intervention instead of uncertainties present. 
See also [9]-[13]. Note that a definition involving necessary outside interventions to achieve the 
goals is discussed later in this paper. It should be noted that, contrary to other definitions, our 
definition of autonomy does not involve descriptions of the means by which a specific level of 
autonomy is achieved, whether smart sensors or intelligent decision making are involved. We 
find it more useful to characterize autonomy using only the possible to achieve goals under given 
uncertainties and letting the specific means by which the level of autonomy is achieved to be 
used in characterizations of the system as smart, intelligent etc. In fact, as it was stated many 
times in our publications, “autonomy is the goal and intelligent means is one way to achieve it.”  
Higher autonomy typically involves higher intelligence.  
 
 
Our definition of autonomous behavior provides a natural way to define levels or degrees of 
autonomy via simple quantitative relations, specifically, as it was mentioned above, {Measure of 
the Set of Goals} x {Measure of the Set of Uncertainties} = L, the level of autonomy. This easily 
leads to an intriguing and interesting relation, namely {Performance} x {Robustness} = L, the 
level of autonomy. Here Performance is a measure of the set of goals that can be achieved (and it 
may include stability) and Robustness (Resilience) is a measure of the set of uncertainties under 
which the goals are reached. Systems with higher performance and/or higher 
Robustness/Resilience have higher degree of autonomy. These issues are discussed in detail later 
in the present paper.  
 
Entropy can also be used as a general measure of the set of uncertainties. Entropy in autonomy is 
discussed at the end of this paper. 
 
An additional interesting measure is the degree of external intervention needed to achieve the set 
of goals. The higher the needed external intervention the lower the level of uncertainties under 
which the goals can be achieved; that is there exists an inversely proportional relation between 
the level of needed external intervention and the level of uncertainties or robustness under which 
the system operates when achieving the set of goals. 
 
Examples are used throughout this paper to illustrate the concepts including a glimpse of how 
these new definitions and relations may be applied to the 5 autonomous vehicle levels used in the 
self-driving car literature and industry. 
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Definitions and Measures 

Etymology of the word autonomy: The term autonomy originated in Ancient Greek: αὐτονοµία 
(autonomia), from αὐτόνοµος (autonomos), which comes from αὐτο (auto) "self" and νόµος 
(nomos) "law", hence when combined it is understood to mean one who gives oneself his/her 
own law. Autonomous means having the capability and authority for self-government.  
 
Autonomy goals: A system exhibits autonomous behavior only while achieving a goal or a set of 
goals. That is, autonomy without clearly identified goals, autonomy for the sake of autonomy is 
not interesting, if we want to build useful engineering systems. Autonomy without goals is as 
vague a concept as claiming that something is optimal without specifying a measure, such as a 
cost to be minimized. For example, a goal of an autonomous train could be to move passengers 
safely from station to station following a time schedule with some probability; the goal of a 
speed cruise control of an automobile is to control the car so to maintain approximately constant 
speed. 
 
Every autonomous system is a control system: An autonomous system always has a set of goals 
to be achieved and a control mechanism to achieve them. This implies that every autonomous 
system is a control system. Here the term “control system” is used in a most general sense, in 
which control (a decision mechanism typically using sensor measurements and feedback together 
with ways to implement these decisions via actuators) is used to make the system (a very general 
collection of processes) attain desirable goals. 
 
As it was mentioned above, the word control in autonomous control has a more general meaning 
than in conventional control; in fact, it is closer to the way the term control is used in every-day 
language; see [4]. To illustrate, in a rolling steel mill, while conventional controllers may include 
the speed (rpm) regulators of the steel rollers, in the autonomous control framework one may 
include in addition, fault diagnosis and alarm systems; and perhaps the problem of deciding on 
the set points of the regulators, that are based on the sequence of orders processed, selected based 
on economic decisions, maintenance schedules, availability of machines etc. All these factors 
have to be considered as they play a role in controlling the whole production process, which is 
really the overall goal. Note that in order to increase autonomy it is typical to implement several 
layers/levels of automation. Local controllers are often referred to as level 1 automation, set 
points assignment as level 2, and so on. 

System and its environment: As it is typically done in the field of control systems, it is useful to 
think of a system to be controlled as being surrounded by a boundary separating it from its 
environment. The system acts upon its environment through its outputs and receives inputs in the 
form of disturbances or additional information. What the system includes within its boundary, 
expressed via the particular system model used, depends of course on the goals and the 
characteristics/properties used to achieve its goals.  
 
Goals and Uncertainties: In addition to the set of goals to be attained the other central 
component of autonomy is the set of uncertainties. For example, in the above cruise control 
example, the speed needs to be maintained (goal) under varying external conditions such as road 
incline, condition of road surface, wind gusts, as well as internal varying vehicle conditions such 
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as hot or cold engine and age of the car (uncertainties). Clearly the uncertainties of interest in an 
autonomous system are the ones that affect the accomplishments of the goals.   
 
So, autonomy is the ability of a system to achieve a set of goals under uncertainties in the system 
and its environment. Autonomy exists only with respect to a set of goals and it is of value when 
there are uncertainties. If there were no uncertainties, we could program the system ahead of 
time, in which case a macro-command would be adequate. In control system theory if we had 
complete knowledge of the system to be controlled and of the external disturbances then we 
could only use open loop control and the control problem would have been rather 
straightforward. Uncertainties however are always present in different degrees. For example, in 
the above case of the train moving on fixed rails from station to station, as in an airport terminal, 
there are reasonable guarantees that no passenger will cross the rails and there will be an 
unobstructed path for the train and so the uncertainties are rather limited and are primarily 
caused by the flow of passengers in and out the train at each station. This problem is manageable 
and currently such automated trains are operating successfully in many airports around the 
world. Compare this with a car moving from point A to point B. Even if we assume that the car 
stays in the same lane, the problem is much harder because there are uncertainties such as traffic 
lights, other cars changing lanes without warning, pedestrians crossing unexpectedly, the weather 
that affects braking distance and so on.  Because of the increased uncertainties designing 
autonomous cars to operate in a city is much harder than designing autonomous trains to operate 
in an airport terminal. It should be noted that significant successes have been achieved in 
airplane automatic pilot systems that are being used thousands of times daily which maintain 
direction, speed and altitude under unexpected disturbances such as gusts of wind and air 
pockets.  
 
In view of the above discussion we introduce the following definition which captures the fact 
that autonomy should always be considered in terms of goals attained under uncertainty. 
 
Given a system S, let G be a set of goals to be attained under a set of uncertainties U.  
 
Definition: A system S is autonomous with respect to the set of goals G under the set of 
uncertainties U if the system S is capable of achieving all goals in G in the presence of all 
uncertainties in U, by itself, without external intervention.  
 
The set of uncertainties U is associated with the set of goals G. It is implied that the uncertainties 
considered in the above definition are the ones that are relevant to the goals considered. For 
example, for the goal of stability certain uncertainty in the parameters may be relevant, but 
different set of uncertainties may be relevant when the goal is tracking. Other uncertainties 
which are irrelevant to the goals of interest do of course exist; for example, in designing the 
autopilot of an aircraft we do not consider the interior design unless it has implications on the 
weight of the aircraft.  
 
It is assumed that the system S may perform these functions autonomously over a significant 
time horizon; that is, this is a repeatable function the system is capable of, over extended periods 
of time. 
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It is possible to have as a goal to control the system so that some property is attained with certain 
probability. For example, the goal could be to attain asymptotic stability with a probability of 
95%. So, the above definition captures the realistic scenarios of achieving goals with certain 
likelihood. 
 
The above definition of autonomy should and does apply to organizations and natural systems as 
well. For example, in an organization, a team led by a manager accomplishes a set of tasks under 
uncertainties such as personnel absences and equipment breakdowns, independently without 
intervention from a general manager. A bacterium may be able to reach a light under normal 
circumstances but needs external help to remove unexpected obstacles in its path.  
 
Degrees or Levels of Autonomy 
 
It is of interest to compare the levels of autonomy in systems. Assume that a given system is 
autonomous with respect to a set of goals under a set of uncertainties. If another system can 
achieve the same goals under higher uncertainties (under a larger set of uncertainties) then 
clearly the second system has higher autonomy. Similarly, if more goals can be achieved under 
the same set of uncertainties then the system has higher autonomy.  
 
The autonomy level of a system can be manipulated and increased by adding feedback control, 
adaptation, learning, planning, failure detection and reconfiguration capabilities, which in effect 
increase the level of uncertainties the system can cope with autonomously.  
 
A fixed feedback control system has low degree of autonomy because it can achieve the stability 
goals under rather restricted parameter variations and external disturbances. When there are more 
substantial parameter changes then one could use methods from adaptive control to achieve 
stability. Such adaptive control system has higher degree of autonomy due to greater uncertainty 
in the parameters it can handle.  
 
The degree of autonomy can be interpreted as the size of an operating region (operating sphere) 
defined by a set of parameters within which the system acts on its own in a safe manner towards 
the goal. In the example of the car speed control, a typical cruise control system can keep the car 
speed at acceptable levels only when the road is not too steep. And such control system has 
certain degree of autonomy as it acts appropriately within its operating region, which is specified 
by the initial design of the system. We could build cruise control systems with larger operating 
regions satisfying the goal of keeping the speed at a preset desired level. One way to achieve this 
is to anticipate, via perhaps a vision system an upcoming steep grade and prepare for it by 
shifting gears or accelerating slightly, which is exactly what human drivers typically do. We 
could also have car speed control systems that may attain additional goals thus increasing even 
more their operating regions. For example, we could add in a car a control system  that maintains 
the same speed as the car in the front (these are called ACC-advanced cruise control systems), 
and in addition it adjusts the distance between the cars depending on the speed, for safety 
reasons. It is clear that these two control systems, taken together can satisfy a set of goals under 
quite diverse conditions. Clearly such system has higher degree of autonomy.  
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For given set of goals, the degree of autonomy may be quantified by characterizing the safe 
operating region within which the system acts appropriately. This region in control systems is 
sometimes referred to as region (ball, sphere) of uncertainty and it is characterized by certain 
norm measures, when of course normed spaces are appropriate. Control systems that act 
appropriately in these uncertainty regions are called robust with respect to these uncertainty 
regions and with respect to goals such as stability (typically Lyapunov asymptotic stability) or 
performance.  
 
Note that the same system may be autonomous or not depending on the stated goals and the 
uncertainties present. Furthermore, a non-autonomous system may have several autonomous 
functions. For example, in cars, the cruise control, the ABS, ACC, lane preserving, etc., offer 
autonomous functionalities and for each one of these subsystems the set of goals and the 
uncertainties could be identified.  
 
Autonomous systems deal with uncertainties primarily using sensors, but also, for example, 
using prior knowledge and machine learning, to improve their knowledge of the processes to be 
controlled and also of the outside environmental influences, so to be able to achieve the goals by 
applying effective decision- making methods. Intervention (human or via a controller) reduces 
uncertainties the system has to deal with autonomously. Successful control actions, by 
engineered systems or human intervention, reduce the set of uncertainties that impact the goals 
and must be dealt with autonomously. Human intervention or adaptive/learning controllers may 
provide information via, for example, cognitive abilities, data bases, prior experience that reduce 
the uncertainties, and lead to a smaller set of uncertainties that need to be dealt with 
autonomously. 
 
Measuring the degree of autonomy is non-trivial. It is perhaps straightforward to compare 
systems that have the same sets of goals but different uncertainties. It was pointed out above that 
an adaptive control system has higher degree of autonomy than a fixed feedback controller 
because it can handle greater parameter uncertainty in achieving stabilization (the common goal). 
When the goals are different as well, then the problem of measuring degrees of autonomy and 
comparing autonomous systems becomes more complex.  
 
The automotive industry currently uses a useful, descriptive classification to distinguish levels of 
autonomy. There is a SAE scale of 5 levels (plus a zero level) with level 5 used for full 
autonomy. Similarly, the AFRL Autonomy Framework is used in the UAV area, where a scale of 
10 levels (plus a zero level) is being used with level 10 used for full autonomy.   
 
Relations 
 
The above discussed relationships that help us characterize different degrees of autonomy may 
be captured by the following very simple relations: 
 
Level or degree of Autonomy = {Measure of the Set of Goals G} x  
{Measure of the Set of Uncertainties U under which the goals in G are attained} 
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Let MG be a measure of the set of goals G and MU be a measure of the set of uncertainties U and 
L be a measure of the level of autonomy of the system. 
 
Then.   L = MG x MU 
 
L, the level or degree of autonomy, depends on both, the measure of the set of uncertainties and 
the measure of the set of the goals that can be accomplished. 
 
The measure of the set of goals should reflect the importance, complexity and number of goals. 
Importance may depend on existing priorities – tracking quickly within a few seconds may be a 
higher priority than tracking asymptotically and in this case the level of autonomy with respect to 
the finite tracking is smaller if only asymptotic tracking may be achieved. Similarly, the measure 
of the set of uncertainties should reflect the size, frequency and number of uncertainties.  
 
For a given level of autonomy L, when MU decreases, MG increases that is under reduced 
uncertainty more goals can be achieved by the system. When MU goes up, MG goes down that is, 
under increased uncertainty fewer goals can be achieved. 
 
When the goal is just stability and the uncertainties are small, that is MG and MU are small then 
the level of autonomy L is low. This is the case for example when stabilization can be achieved 
via a fixed feedback controller. When stabilization can be achieved under higher uncertainties, 
which is the case for example when adaptive control is used to stabilize a system, the level of 
autonomy L is higher. To increase L, when there is a fixed set of goals, one needs to increase 
uncertainties under which the system is capable of achieving the goals.  
 
Appropriate controllers in effect increase the size of the set of uncertainties relevant to the goals 
that can be accomplished autonomously and increase the system’s level of autonomy. Note that 
these controllers are modifying the system. Uncertainties that can be dealt with autonomously 
may be increased, for example using adaptation and learning, or human intervention, where extra 
sensors, cognitive abilities, past experience effectively increases the set of uncertainties the 
system can cope with autonomously. For example, consider the case when a driver intervenes 
and assumes certain functions to help the vehicle cope with uncertain situations. 
 
Clearly, by introducing restrictions on the uncertainties in autonomous vehicles (e.g. adding 
structure - staying in the same lane, using rails, assuming good weather etc.) more goals can be 
achieved. 
 
More goals can be achieved by adding additional controllers. For example, assume that a given 
system is stabilized via a feedback controller, which operates successfully over a set of 
uncertainties. If a tracking controller is added the goals that can be achieved increase; however, 
the set of uncertainties that can be dealt with autonomously while tracking may be reduced 
compared to the stabilization case. 
 
Given a system, if there are no uncertainties at all, a much-enhanced set of goals may be 
achieved with appropriate controllers. For example, we could use open loop control to cancel all 
existing dynamics and introduce any new desired dynamics.  However, note that when a system 
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is run open loop, uncertainties in plant parameters and disturbances could deny the ability to 
achieve control goals, such as stability.  
 
 
 
Given a system is there a maximum L? 
 
The answer is affirmative. For a given system there is a maximum set of goals that can be 
achieved. For example, the attainable goals for a self-driving vehicle do not include the ability to 
fly – at least not yet. 
 
Considering this maximum set of goals, consider the set of uncertainties that affect those goals 
and then consider the largest set of uncertainties under which this set of goals can be attained.  
 
To find the maximum autonomy level of a system, consider the measures for the set of goals and 
the set of uncertainties under which these goals are achieved and then maximize their product by 
varying the sets of goals and for each set of goals selecting the corresponding set of uncertainties 
that have the maximum measure.  
 
External Intervention 
 
Autonomy may also be defined in terms of needed, necessary outside intervention to achieve the 
goals instead of in terms of a set of disturbances. An equivalent definition of autonomy is: 
 
A system is autonomous with respect to a set of goals G under a set of outside interventions 
I (by humans or engineered systems), when the system can achieve all the goals in G, 
assisted by just the interventions I.  
 
If the goals can be achieved under a smaller set of outside (human and otherwise) interventions, 
then the system may cope with higher uncertainties and has higher autonomy; if more goals can 
be achieved under the same set of interventions or the same set of uncertainties then the system 
has higher autonomy.  
 
The lower the needed intervention to accomplish the goals, the higher the level of autonomy. The 
uncertainty the system can cope with while achieving its goals, is inversely proportional to 
intervention necessary to achieve the same goals.   
 
{Measure of the Set of Interventions I under which the goals in G are attained} x  
{Measure of the Set of Uncertainties U under which the goals in G are attained} =  
a constant which is taken to be 1. That is    MI x MU = 1 
 
These relationships may be captured via a simple relation: 
 
Level or degree of Autonomy = {Measure of the Set of Goals G} /  
{Measure of the Set of Interventions I under which the goals in G are attained}  
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Let L be a constant that corresponds to the level of autonomy. Let MG be a measure of the set of 
goals G and let MI be a measure of the set of needed interventions I. Then 
 
L = MG / MI 
 
Note that here it was assumed that MU x MI = 1. That is, MI the measure of the set of needed 
interventions may be taken to be inversely proportional to MU the measure of the set of 
uncertainties U.  
 
As an example, consider a home thermostat. A simple thermostat can achieve the goal of thermal 
comfort with minimum energy use, with user interventions to change the set-point when 
residents leave or return to home, sleep, etc. A smart thermostat could achieve the goal without 
this level of human intervention, relying on occupancy sensors, models of thermal comfort at 
night versus daytime, etc. The smart thermostat has higher level of autonomy as it can achieve 
the goal with lower user intervention. 
 
In certain cases, human intervention is needed to take care of a subset of the existing 
disturbances thus eliminating them from the set of uncertainties the system needs to cope with. 
Such intervention allows the system to attain the goals autonomously, under the now reduced set 
of disturbances. For example, the cruise control in a car that maintains the car’s speed constant 
may be not be able to perform if the road incline is very steep. The driver may intervene using 
say look ahead control policies to cope with these large size uncertainties of the road incline and 
so reducing the set of incline uncertainties the system needs to deal with autonomously.   
 
Performance and Robustness 
 
Performance may be taken to be a measure of the set of goals G achieved by the system. A 
performance level is assigned that captures the number of goals, their difficulty and importance. 
It should be noted that the term Performance here has a more general meaning than in the 
Controls literature, where typically it does not include stability. A level of Performance is 
accomplished under a level of Robustness which corresponds to the level of uncertainty under 
which the goals are achieved. For fixed performance level, higher level of robustness implies 
higher autonomy. Also, for fixed robustness level, higher level of performance implies higher 
autonomy level. For fixed autonomy level, higher performance leads to lower robustness and 
higher robustness leads to lower performance.   
 
Level of autonomy L = {Performance} x {Robustness} 
 
Performance P is a particular measure of the set of goals G, MG. Robustness R is a particular 
measure of the set of uncertainties U, MU. For P = MG and R = MU.          
 
L = P x R 
 
For fixed level of autonomy L when Performance increases Robustness must be reduced. This 
brings up interesting issues regarding fundamental limitations. 
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Robustness R which is a measure of the uncertainties the system can cope with is inversely 
proportional to MI the level of needed outside intervention.  
 
R x MI = 1 
 
Summary of Measures and Relations 
 
Let MG be a measure of the set of goals G.  Let MU be a measure of the set of uncertainties U.  
If L is the level of autonomy of the system then 
 
L = MG x MU  
 
Performance P can be seen as an MG. Robustness R can be seen as an MU. Then for P = MG and 
R = MU    the above relation becomes     
 
L = P x R  
 
Let MI be a measure of the set of needed interventions I. Then for MI x MU = 1 the above relation 
becomes     
 
L = MG / MI  
 
In view of the relation between measures of Uncertainty and Intervention, namely 
 
MI x MU = 1 and the fact that measure of Robustness R = MU we have that  
 
MU = R = 1/MI that is the smaller the needed intervention the higher the robustness of the system 
 
Entropy 
 
Using Entropy to compare autonomous systems that achieve the same set of goals: Entropy is a 
measure of uncertainty. If two systems accomplish the same goals, the system with higher 
Entropy has a higher level of autonomy since the goals are achieved under greater uncertainties. 
For the same goals, higher Entropy implies higher levels of autonomy.  
 
Using Entropy to compare autonomous systems with varying sets of goals: Entropy measures 
uncertainty. Reduced entropy means reduced uncertainty that implies an increase of the set of 
goals possible, that is a higher level of autonomy. 
 
As Entropy decreases the set of goals that may be achieved increases. When Entropy is epsilon 
or zero, a very large set of goals may be accomplished – restricted only by the system’s 
characteristics, its dynamics and structure. 
 
As Entropy increases the set of goals that maybe achieved decreases. When Entropy is very large 
the set of goals that can be achieved becomes very small – epsilon size or zero. 
 



 

 11 

Let MG be a measure of the set of goals G and MU be a measure of the set of uncertainties U.  
We have seen that L = MG x MU  
 
Entropy can be taken to be the measure for the uncertainties.  
For Entropy H = MU L = MG x H 
 
Humans in the Loop and Adaptive Autonomy 
 
When one considers humans collaborating with engineered systems, then the overall system that 
includes humans in the loop may be considered autonomous with respect to a large set of goals 
and under a large class of uncertainties, that is having a high level of autonomy. Depending on 
the role of the humans in the loop and the level of control authority humans exert, the remaining 
system will have different degrees or levels of autonomy. So, in an automobile, if for example 
the goal is to keep the vehicle inside a lane while travelling with constant speed, the system may 
consist of the vehicle and the driver where the system attains its goals in the presence of 
uncertainties/disturbances, such as gusts of wind and road inclines. The driver together with the 
automobile’s control systems provide the correct steering and gas pedal commands so the vehicle 
maintains its course within a lane and at certain (approximately) constant speed in the presence 
of uncertainties/disturbances, such as gusts of wind and road inclines. If one considers the 
controller to consist of just the control systems of the car without the driver, then the system, the 
car, has a lower degree of autonomy, meaning that it may need extra help from humans or other 
systems to attain the required level of autonomy.  
 
Humans or other systems may insert themselves at different levels of a functional hierarchy (that 
correspond to different levels of autonomy) used to describe the operation of autonomous 
intelligent systems [2-6], and take over control functions. For example, humans may insert 
themselves to take over planning, failure detection and identification, reconfiguration or learning 
functions.  Or they may insert themselves to take over lower control functions e.g. a driver may 
want to take over the functions of the ABS system to perform the braking pumping action on his 
own. Such adaptive autonomy, where the authority the human operator exercises may vary, 
appears to be a very promising direction in autonomous systems research. The level of authority 
of the human operator may vary and the changes may be initiated not only by the human 
operator, but also by the vehicle if it detects driver errors or lowering of the driver’s alertness.  
 
Optimization and Autonomy definitions analogy. 
 
Optimal with respect to a set of goals (a performance measure) subject to a set of constraints. 
Autonomous with respect to a set of goals (a measure) subject to a set of uncertainties 
 
The constraints restrict the set of possible solutions.  The constraints may be severe enough for a 
feasible solution not to exist (set of constraints be infeasible) in which case no optimal solution 
exists (in fact no solution exists at all). 
The uncertainties restrict the set of possible control policies that achieve the goals.  The 
uncertainties may be large enough for no control policies to exist that achieve the goals (the set 
of uncertainties render the problem infeasible) in which case no control policy exists that make 
the system autonomous with respect to the given set of goals. 
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APPENDIX A 
 
Consider the 0 to 5 levels of autonomy in vehicles. We have 
 
MG x MU = L  
 
and 
 
MG / MI = L 
 
 
Let the scale for MG be 0-10 and the scale for MU be 0-10. Then the range of level of autonomy 
will be 0-100.  
 
Assume that the goals are the same - to drive at the level of a human driver under any normal 
road conditions. We shall take MG to be equal to 10 across all levels. 
 
At level 5 we calibrate MU to be 10, which implies that all goals are achieved under maximum 
uncertainties.  At level 0 we calibrate MU to be 0.1, which implies that all goals are achieved 
under minimum or no uncertainties.  
 
In summary 
 
At level 0, MU = .1 
At level 1, MU = 2 
At level 2, MU = 4 
At level 3, MU = 6 
At level 4, MU = 8 
At level 5, MU = 10 
 
The levels of autonomy then will be  
 
At level 0, {MG = 10} x {MU = .1} = 1 = AL the level of autonomy. 
At level 1, {MG = 10} x {MU = 2} = 20 = AL 
At level 2, {MG = 10} x {MU = 4} = 40 = AL 
At level 3, {MG = 10} x {MU = 6} = 60= AL 
At level 4, {MG = 10} x {MU = 8} = 80= AL 
At level 5, {MG = 10} x {MU = 10} = 100 = AL 
 
 
Instead of Uncertainty consider now a measure of required Intervention for the goals to be 
achieved.  
 
Let the scale for MG be 0-10 and the scale for MI be 0-10. Then the range of level of autonomy 
will be 0-100.  
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At level 5 we calibrate MI to be 1/10=0.1, which implies that all goals are achieved under 
minimum or no intervention.  At level 0 we calibrate MI to be 1/0.1=10, which implies that all 
goals are achieved only under maximum intervention.  
 
In summary 
 
At level 0, MI = 1/0.1 = 10 
At level 1, MI = 1/2 
At level 2, MI = 1/4 
At level 3, MI = 1/6 
At level 4, MI = 1/8 
At level 5, MI = 1/10 = 0.1 
 
The levels of autonomy then will be 
 
At level 0, {MG = 10} / {MI = 1/0.1=10} = 1 = AL the level of autonomy. 
At level 1, {MG = 10} / {M I = 1/2} = 20 = AL 
At level 2, {MG = 10} / {M I = 1/4} = 40 = AL 
At level 3, {MG = 10} / {M I = 1/6} = 60= AL 
At level 4, {MG = 10} / {M I = 1/8} = 80= AL 
At level 5, {MG = 10} / {M I = 1/10=0.1} = 100 = AL 
 
We could have taken 
 
At level 0, MI = 1/0.1 = 10 
At level 1, MI = 8 
At level 2, MI = 6 
At level 3, MI = 4 
At level 4, MI = 2 
At level 5, MI = 1/10 = 0.1 
 
In that case 
 
The levels of autonomy then will be 
 
At level 0, {MG = 10} / {MI = 1/0.1=10} = 1 = AL the level of autonomy. 
At level 1, {MG = 10} / {M I = 8} = 10/8 = AL 
At level 2, {MG = 10} / {M I = 6} = 10/6 = AL 
At level 3, {MG = 10} / {M I = 4} = 10/4= AL 
At level 4, {MG = 10} / {M I = 2} = 10/2= AL 
At level 5, {MG = 10} / {M I = 1/10=0.1} = 100 = AL 
 
The constant then takes on different values from the case when Uncertainties are considered 
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