
A Tutorial Introduction to Supervisory Hybrid Systems

Technical Report of the ISIS Group
at the University of Notre Dame

ISIS-98-004
October, 1998

M.D. Lemmon, K.X. He, and I. Markovsky
Department of Electrical Engineering

University of Notre Dame
Notre Dame, IN 46556

Interdisciplinary Studies of Intelligent Systems

1

A Tutorial Introduction to Supervisory Hybrid Systems

Michael D. Lemmon�, Kevin X. He, and Ivan Markovsky
Department of Electrical Engineering

University of Notre Dame

October, 1998

Abstract

Supervisory hybrid systems are systems generating a mixture of continuous-valued and discrete-valued
signals. These systems provide convenient models for a wide range of complex engineering applications
ranging from small real-time embedded systems to large-scale traffic control and manufacturing facilities.
In recent years there has been considerable interest in using hybrid systems theory to develop a systematic
framework for the analysis and design of complex engineering systems. This paper provides an introduction
to some of the concepts and trends in hybrid dynamical systems theory.

1 Introduction

Supervisory hybrid systems are systems generating a mixture of continuous valued and discrete valued sig-
nals. This systems paradigm is particularly useful in modeling applications where high level decision making
is used to supervise process behavior. This occurs, for instance, whenever a network of computers is used
to control the physical plant in a decentralized manner; as is found in chemical process control or flexible
manufacturing facilities. Hybrid system methodologies are also applicable to switched systems where the
system switches between various setpoints or operational modes in order to extend its effective operating
range. Such applications are found in aerospace and power systems. Hybrid systems, therefore, embrace a
wide range of applications [32] [71] [75] [76] [77] [78] [79] ranging from embedded real-time systems to
large-scale manufacturing facilties, from aerospace control to traffic control. Over the past 5 years there has
been considerable activity in the area of hybrid systems theory and this article provides an introduction to
some of the basic concepts and trends in this emergent field.

The termhybrid refers to a mixing of two fundamentally different types of objects or methods. Hybrid neural
networks arise when we combine artificial neural networks with fuzzy logic or with statistical methods. A
system modeled by the interconnection of lumped and distributed parameter systems may be referred to as a
hybrid system. Sampled data control systems are hybrid in that they combine discrete-time and continuous-
time systems. This paper deals withsupervisory hybrid systems. Owing to the diverse useage of the term
hybrid, we need to be precise in delineating the hybrid nature of these supervisory systems.

�We gratefully acknowledge the partial financial support of the Army Research Office (DAAH04-96-10285 and DAAG5-98-1-0199)
and the National Science Foundation (NSF-ECS95-31485)

2

System science provides a formal mathematical approach to the study of dynamical systems. The system
scientist treats the system as an abstract mathematical mapping between various sets ofsignals. The signals
are, themselves, functions between a set of time indices,I , and a set of measurmentsM. Signals, therefore,
are functions of the formx : I ! M which map a timet 2 I onto a measurementx(t) in the setM. Hybrid
systems arise when they generate signals whose index or measurement sets can be treated as the Cartesian
product of a discrete and continuous set. The obvious example, in this case, is the class of sampled data
systems in which the index setI is the Cartesian product of the integers (discrete-time) and real numbers
(continuous-time).Supervisory hybrid systems, on the other hand, arise when the measurement setM is the
Cartesian product of a discrete set (usually taken to be a finite set of symbols or integers) and a continuous set
(usually taken to be some subset of Euclideann-space). The discrete-valued signals are sometimes referred
to asdiscrete-eventsignals. The hybrid nature of supervisory hybrid systems, therefore, is a consequence of
the fact that these systems generate a mixture of continuous-valued and discrete valued signals.

This paper is concerned with the study ofsupervisory hybrid systems. A common example of such systems is
found whenever a computer is used tosupervisethe behavior of a continuous-valued process. The continuous
process may be a closed loop control system whose mathematical representation takes the form of an ordinary
differential equation. The computer program may be seen as supervising this control loop by selecting various
reference inputs. This program’s current state evolves over a discrete set and the dynamics of the associated
discrete-eventprocess are formally modeled using language theoretic or graph theoretic constructions. We
therefore see that this computer supervised system is a hybrid system since it mixes continuous-valued (the
control loop’s state) and discrete-event (the program state) variables.

Over the past five years there has been considerable interest in supervisory hybrid systems [63] [64] [65]
[66] [67] [68] [69]. One of the primary motivations for this interest rests with the fact that rapid advances
in computer and networking technology have greatly accelerated the deployment of large scale supervisory
systems. Examples of such large scale systems include the air traffic control grid, communication networks,
and the power distribution grid. Traffic control is concerned with the supervision (a discrete process) of
vehicles (continuous processes). Congestion control in communication networks is similar in that we’re
interested in supervising the flow of data packets so that some continuous-valued measure of service quality
is optimized. Power distribution involves discrete switching to ensure the stable and continuous delivery of
electrical power across the grid. The safe operation of such systems is of paramount interest to the nation as
these systems constitute major components of the national infrastructure. Current methods for the design and
analysis of such systems rely heavily on simulation testing which is a costly and time consuming method of
analysis providing no provable guarantees of safe system operation. The hope is that hybrid systems theory
will provide a systematic framework for system engineers that will greatly reduce the cost of large scale
system development with concurrent increases in system reliability.

The remainder of this paper is organized as follows. Section 2 provides a concrete example of a hybrid system
which will be used throughout the paper as a pedagogical tool illustrating various concepts in hybrid systems
theory. Section 3 discusses modeling frameworks for hybrid systems with specific attention being paid to
thehybrid automatonin section 4. Not only may the system have a hybrid character, but the specifications
on desired system behaviors may also be hybrid. Section 5 discusses specification logics for hybrid systems
that express system requirements on both the discrete and continuous states of the system. Section 6 surveys
current methods and concepts used to verify or validate desired system behaviors and then concludes with a
survey of current methods for hybrid control system synthesis. Final remarks will be found in section 7.

3

2 Hybrid System Example

A concrete example of a supervisory hybrid system will be found in figure 1. This figure shows a free floating
robotic vehicle with two articulated arms. The system is required to obtain components from aparts binand
move these components to awork areawhere an assembly operation is to be performed. The tasks of fetching
the workpiece, transporting it to the work area and then returning to the parts bin to fetch another workpiece
are performed repeatedly. As illustrated in figure 1, however, it is assumed that the parts bin is shared by
both robotic arms. The introduction of a shared resource (i.e. the parts bin) generates amutual exclusion
requirement on the system. Not only must the robotic arms complete their repetitively performed tasks, they
must also be sure to execute the tasks in a way that ensure both arms don’t enter the parts bin at the same
time. In other words, the robotic system needs to treat the parts bin as acritical sectionwhich both arms
access in a mutually exclusive manner.

θ2
’

θ2

θ
B θ1θ1

’

A2

A1

B

PB

D1

D2

x

y

Figure 1: Free Floating Robotic System

A candidate solution to the mutual exclusion problem can be readily developed [58] [59] [62]. Let’s assume
that each arm is controlled by a computer process (an instantiation of the arm control program). We therefore
have two concurrently running computer processes that need to coordinate their actions if they are to ensure
the physical system (i.e. the robotic arms) enters the parts bin in a mutually exclusive manner. Assuming
that a multi-tasking operating system (O/S) controls the execution of both computer processes, we can then
use O/S control structures such assemaphoresor mutexes[60] to ensure that both processes execute, in a
mutually exclusive manner, that section of their code requesting access to the parts bin. In other words, by
requiring that the virtual (i.e. computer) processes respect the mutual exclusion requirement, we hopefully
expect the robotic arms (i.e. the physical system) to respect that requirement as well.

The pseudo-code for one of the computer processes is shown below

4

ENTRY: if(x==1) goto ENTRY

x=1;

CRIT1: if(arm_not_in_partsbin) command_arm(1);

EXIT: x=0;

ERR: if(arm_locked) STOP;

REM: if(arm_not_in_workarea) command_arm(-1);

goto ENTRY;

This code segment has four distinct segments. There is an entry section (ENTRY) which tests the lock variable
x to see if the other arm is moving towards the parts bin. In practice, the lock variable could be implemented as
a O/S semaphore. If the lock variablex is 1, then the program sets the lock variable to alert the other process
that it is heading to the parts bin. This process then enters its critical section (CRIT1) which represents
that code which must be executed mutually exclusively. In other words, both computer processes cannot be
executing their critical sections at the same time. While in the critical section, the program checks to see if
the arm is in the parts bin (the function callarm_not_in_partsbin) and outputs the command signal to
the arm’s motor (the function callcommand_arm(1)). Upon leaving the parts bin, the process releases the
lock variable and then enters its remainder (REM) section from which it commands the arm to move back
to the work area. This remainder section checks to see if the arm is in the work area (the function call
arm_not_in_workarea) and ouptuts the command signal to the arm (the function callcommand_arm(-1))
which moves the arm towards the work area. We’ve also included anerror state (ERR) in the program that
aborts the program’s execution if the arm hits its mechanical limits (i.e.arm_locked evaluates to true). From
this pseudo-code, we see that the state of the program can be characterized by 3 different state variables; the
lock variable, the program counter for the first process and the program counter for the second process. Since
these variables take values in a discrete set, the supervisory logic embodied in this program is a discrete event
system.

Whether or not ensuring mutually exclusive execution of the process’ critical sections is sufficient to guaran-
tee the safe operation of the physical system is not immediately apparent. From our earlier discussion, we
saw that the computer process controlling each arm occupies a number of distinct states. Are these discrete
states sufficient to represent the behavior of the physical process? For this particular system, the answer is
negative because there is a subtle coupling between the arm and body dynamics. The equations of motion for
the arms can be expressed by the following ordinary differential equations

θ̈1 = �θ̇1+k(θ1+θb� r1)

θ̈2 = �θ̇2+k(θ2+θb� r2) (1)

whereθ1 andθ2 are the angular positions of arm 1 and arm 2 with respect to the robot’s body axis (see
figure 1). For this example, we see that the control law is a proportional feedback law with gaink and with
reference inputsr1 andr2. These reference inputs represent commands that direct the arm to move to the
parts bin or work area. Due to the Hamiltonian nature of the system, the movement of the arms will induce
a body rotation so that the system’s total angular momentum is conserved. We therefore know that the body
angleθb with respect to an inertial frame must satisfy

Jbθ̇b+Jaθ̇1+Jaθ̇2 = 0 (2)

whereJb andJa are the moments of inertia for the body and arms, respectively.

5

Note that the state of the continuous-valued subsystem is not entirely reflected in the discrete-event state of
the computer process. Transition between discrete states is triggered on the entry into or exit from the parts
bin and this knowledge is determined by explicitly examining the arm’s position with respect to the position
of the parts bin. by measuringθ1+θb. We assume that the computer process can only measureθ̄1 = θ1+θb,
the angle between the arm and the parts bin (or work area). Under our assumptions, it is assumed that the
body angle cannot be obtained independently fromθ̄1. The fact that the arm angle,θ1, (relative to the body)
and body angle,θb are not directly observable suggests that it may be possible for this system to fail in ways
that cannot be predicted by an examination of the controlling computer processes. From equation 2, we see
that arm motions will induce a body rotation since the system conserves total system angular momentum. It
may, therefore, be possible for the system’s body to work itself into a position from which one of the arms
cannot reach the parts bin. If this were to occur, then the system woulddeadlock(i.e. the program would be
get stuck in one of its discrete states). In other cases, system dynamics imply a subtle coupling between both
arms which might make it possible for an arm to enter the parts bin when the controlling computer process
is not in its critical section. As a result, it is possible to violate the mutual exclusion constraint without the
computer process actually detecting this violation.

The conclusion to be drawn from the preceding discussion is that even relatively simple systems such as that
shown in figure 1, may need to be studied using a formal framework in which both discrete and continuous
system dynamics are examined simultaneously. The goal of hybrid system science is to provide such a formal
framework and the following sections discuss what progress has been made to date in this direction.

3 Hybrid System Modeling

Hybrid systems have been studied extensively by computer scientists and system scientists. Computer sci-
entists have been interested in the behavior of real-time and multi-processor programs. The system models
developed for such systems are usually based on extensions of traditional finite state machine or Petri net
formalisms. System scientists, on the other hand, have tended to employequationalmodels in which system
trajectories are represented as functions solving some set of equations. Each approach has its strengths and
weaknesses. What has become apparent in recent years is that a successful modeling paradigm for hybrid
systems must integrate ideas and methodologies from both disciplines in a complementary way.

Early system theoretic models for hybrid systems tended to focus onswitched systems[74]. These are systems
that can be implicitly modeled by the following set of equations,

ẋ = f (x(t); i(t)) (3)

i(t) = q(x(t); i(t�)) (4)

wherex : ℜ !ℜn is the continuous valued state trajectory andi : ℜ !Ω is a discrete valued state trajectory
taking values in the discrete setΩ. x(t) andi(t) denote the values that the continuous and discrete trajectories
take at timet, respectively. The functionf : ℜn�Ω!ℜn represents a set of continuous dynamical systems
(vector fields). The dynamical system used at timet is represented by the discrete statei(t) at timet. The
dynamics of the discrete state are embodied in equation 4. In this equation,i(t�) = limτ"t i(τ) represents the
righthand limit of the functioni(t) at t. Equation 4 means that the discrete state transtions at timet from state
i(t�) to i(t) and that this transition is conditioned on the current value of the continuous state,x(t). The set
of discrete sets we might transition to is characterized by the discrete transition function,q : ℜn�Ω! Ω.

It is convenient in switched systems to define aswitching setbetween theith and jth subsystems by the

6

following equation,
Ωi j = fx2 ℜn : j = q(x; i)g (5)

This set is the set of all continuous states which enable a transition from discrete statei to discrete statej.
We usually assumeΩi j is a ”nice” set in the sense that its boundary is ann� 1-dimensional manifold (a
hypersurface). We therefore see that the switching action may be initiated whenever the system’s continuous
state evolves across that boundary.

A natural question to be asked about such equational representations is whether or not they are well-posed. In
other words, are there any continuous or discrete trajectories that satisfy these equations? Conditions for the
existence of absolutely continuous trajectories generally require that a set-valued mapping associated with
these system equations be upper semicontinuous and convex [7]. These are very general conditions and are
satisfied by most of the systems of interest.

The existence conditions [7], however, do not preclude the existence of hybrid system continuous state tra-
jectories which are not absolutely continuous. Switching systems of the form shown in equations 3 and 4 are
well known to exhibitchatteringsolutions in which the system switches infintely fast between two different
types of vector fields. The existence and exploitation of this relaxed behavior is, in fact, a basic principle
behind another important class of hybrid systems known as variable structure systems [8]. It is interesting
to note that computer scientists also have an interesting term for this chattering behavior. Systems capable
of exhibiting such chattering solutions are sometimes referred to asZenosystems. The name refers to the
classical Zeno’s paradox in which the concept of a limit is first informally introduced. In supervisory hybrid
systems, we want all of our systems to be non-Zeno.

While we can usually ensure the existence of solutions to such equations, there is no guarantee that these
solutions will be unique. The switching systems represented in equations 3 and 4 can also be treated as
differential inclusions for which it is well known that nondeterministic solutions exist. In other words, if
we know the system state at timet, the future behavior of the system may take any one of a number of
different paths. This nondeterminism is, in fact, a fundamental property of hybrid systems and it represents
one important way in which hybrid systems theory differs from traditional linear systems theory.

The switching system introduced in equation 3 and 4 provides a convenient model for many physical systems,
but it does not capture the full range of possible hybrid behaviors. The preceding model assumed solutions in
which the continuous state trajectories were continuous across the switching boundary. There are, however,
many systems in which the continuous state makes discontinuous jumps on the switching boundary [6] [5].
One example of such a system is the bouncing ball where, due to an elastic collision, the ball’s velocity
vector makes an instantaneous sign change upon hitting the floor. A variety of hybrid system models have
been developed to allow the representation of such discontinuous or autonomous jumping. A good reference
to some of these models will be found in [4].

The preceding references to the hybrid system’s modeling literature refer exclusively to the efforts of tradi-
tional system scientists. These scientists were trying to develop an equational framework capturing a suf-
ficiently rich array of possible hybrid behaviors (chattering, switching, and autonomous jumping). A key
challenge to be faced by any hybrid systems paradigm, however, involves developing a framework which
not only treats continuous-state jumping, but also captures the switching nature of the discrete-event process.
Equational representations familiar to most system scientists, unfortunately, do not provide a convenient way
of capturing discrete event behaviors. What is really needed for hybrid systems theory to advance is a mod-
eling paradigm providing greater insight into the discrete event dynamics of the hybrid system.

An early hybrid system model dealing explicitly with discrete and continuous dynamics will be found in

7

[9]. In this case, the hybrid system was viewed as logical discrete event supervisor connected to a contin-
uous subsystem. The discrete and continous systems were interconnected through an interface that trans-
formed continuous-valued measurements into discrete event signals and vice versa. This work suggested
a logical discrete-event system (DES) approach to hybrid controller synthesis which was reminiscent of
traditional approaches to sampled data control. The approach advocated the extraction of an equivalent
discrete-event model of the continuous subsystem which could then be supervised using extensions of the
Ramadge-Wonham supervisory control theory [61].

While providing a very general framework for hybrid systems, the model in [9] [11] [10] was of limited
utility due to the restrictive nature of the control. A framework with significant potential for practical useage
was developed by the computer science community [1] [2]. Computer scientists have long used formal graph
theoretic models for concurrent computer processes. Finite state machines and Petri nets represent two well
known examples of such models and while powerful computational tools were developed for the manipulation
of such formal models, it was apparent that in dealing with multiprocessors and real-time applications, that the
continuous nature of time would require some extension of these traditional computer science methodologies.
This realization led to an attempt to extend traditional and highly successful model checking [28] for finite
state machines to real-time systems. The result was atimed[2] andhybrid automaton[1] . These automata
were generalizations of traditional finite state machines in which event transitions were conditioned on the
truth value of logical propositions defined over a set of continuous-valued dyanmical processes. The work
was very influential in that it led to the development of verification tool [3] [22] [23] [27] for real time and
hybrid systems and has served as the starting point for much of the recent research in hybrid systems.

The hybrid automaton is closely related to the differential automaton which was introduced in [13] [70].
Another related version of the hybrid automaton will be found in [14]. Extensions of the approach using
Petri nets (rather than finite state machines) will be found in [15] [46] [16] [17] [18] [19]. While the hybrid
automaton has been very influential in the study of hybrid systems, there are some significant limitations
and much recent research has attempted to define the boundary of these limitations. Nonetheless, the hybrid
automata in spite of its limitations represents an necessary starting point for the study of hybrid systems
theory. For this reason the following section will present the hybrid automaton in more detail.

4 Hybrid Automata

The hybrid automaton is an extension of the traditional finite state machine [88]. It can be defined as a 3-
tuple(N ;X ;L) whereN is a labeled marked directed graph called anetwork, X is a set of continuous-valued
dynamical processes calledtimersandL is a mapping from the network’s vertices and arcs onto formulae
in a propositional logic. The network models the discrete-event subsystem and the timersX represent the
continuous dynamics of the hybrid system. The relationship between these two subsystems is captured by
the labeling functionL .

A network or directed graph is the ordered pair(V;A) whereV is a set of vertices andA�V�V is a set of
directed arcs between vertices. The vertex set is finite with its cardinality denoted asjVj. Networks are often
represented graphically. An open circle is used to represent each vertex of the network. An arrow starting
at vertexvi and terminating with an arrowhead at nodevj is used to represent the arc(vi ;vj). As a specific
example of a network, let’s consider the set of vertices

V = fv1;v2;v3;v4;v5g (6)

8

and the set of arcs
A= f(v1;v2);(v2;v3);(v3;v4);(v4;v1);(v2;v5);(v4;v5)g (7)

Figure 2 shows the graphical representation of this network.

GoTo Bin

v
1

2v

3
v

v
4

v5

Leave Bin

Work Area Stop Parts Bin

Figure 2: Network for a Discrete Event System’s State Space

The network(V;A) denotes all possible states that a discrete-event system might occupy. Which state a
specific system is currently occupying is shown bymarkingthe network. A marked network is the 3-tuple
(V;A;µ) whereV andA are the network vertices and arcs, respectively. The final element of the triple is
a functionµ : V ! f0;1g which associates either zero or one with each vertex of the network(V;A). If
µ(v) = 1, then we say vertexv is marked. Otherwise the vertex is unmarked. Graphically, we mark a network
by placing a small solid circle (also called atoken) in the marked vertex. As shown in figure 2, the vertexv2

is marked.

By itself, the marked network(V;A;µ) is an abstract mathematical object. We nowbind this object to a
specific interpretation so it becomes a model of something. Such a binding is accomplished by labeling the
vertices of the network with strings or names that have a concrete meaning. Formally, we denote a labeled
marked network by the 4-tuple,(V;A;µ; `) where(V;A;µ) is a marked network and̀: V [A! Ω maps the
vertices and arcs of the network onto a discrete set of labels. Consider for example, the network shown in
figure 2 and let’s introduce the following labeling function on the vertices

`(v1) = WorkArea (8)

`(v2) = GoToBin (9)

`(v3) = PartsBin (10)

`(v4) = LeaveBin (11)

`(v5) = Stopped (12)

The labeled vertices are shown in figure 2. With these labels, the network shown in figure 2 provides a
graphical model for the computer program we used to control the arms of the vehicle in figure 1. There
are, in this figure, 4 discrete states associated with each of the program segments given in the pseudo-code
described above. In addition to these 4 states, we’ve also included a fifth state (Stopped) that represents a
failure condition under which the system does an emergency stop.

9

As presented so far, the labeled marked networkN = (V;A;µ; `) represents the discrete state of the program
controlling the arms in the paper’s robot example. We can also, however, introduce a very simple dynamical
rule which allows us to viewN as a discrete-event dynamical system. Denote thepresetandpostsetof a
vertexv as�v andv�, respectively. Define both of these objects as

�v = fw2V : (w;v) 2 Ag (13)

v� = fw2V : (v;w) 2 Ag (14)

The preset (postset) ofv therefore consists of all vertices which are connected tov by an input arc ,(w;v)
(output arc,(v;w)). An arc(w;v) will be said to beenabledif and only if µ(w) = 1. Any enabled arc may
fire. Let µ be the network’s marking function before enabled arc(v1;v2) fires and letµ0 denote the marking
function after the arc fires. The relationship betweenµ andµ0 is

µ0(w) =

8<
:

1 if w= v2

0 if w= v1

µ(w) otherwise
(15)

In other words, the firing of arc(v1;v2) unmarks vertexv1, marks vertexv2, and leaves all other vertices in
the network unchanged.

The labeled marked network described above is sometimes referred to as afinite state machine. Finite state
machines are often referred to as finite automata. This paper does not distinguish between the two structures.
It should be noted that finite automata are usually defined from a language theoretic formulation. To keep the
presentation more compact, we treat finite state machines and finite automata in the same way using a graph
theoretic formalism. While these models are very useful, it is common practice to augment the structure
by labeling the arcs and vertices with statements conditioning the firing of arcs. One common example of
such an augmented network is found in logical DES control where finite state machines are augmented with
conditional labels that disable the firing of specific arcs of the network as a function of the network’s current
marking. When these conditional statements are also functionally related to the states of a continuous-valued
dynamical system, then we obtain the Alur-Dill hybrid automaton [1].

The Alur-Dill hybrid automaton was introduced in response to a need to accurately model the behavior of real-
time programs. Real-time systems, of course, contain an implicit dynamical system; a clock with associated
differential equation ˙x = 1. The clock can be used to condition program execution so that program code
segments at executed at the correct real-time, not just in the correct order. Any control systems engineer with
experience in the development of embedded control systems will be aware of the use of interval timers in
controlling program execution in real-time. The hybrid automata model was introduced to capture this aspect
of real-time programming.

To formally define the hybrid automaton, we need to introduce the timers and labels mentioned in the opening
paragraph of this section. We define theith timer by the ordered triplexi = (fi ;xi0; ti0) where fi : ℜn ! ℜn

is a Lipschitz continuous vector field defined over the continuous state spaceℜn, xi0 is an initial condition in
ℜn, andti0 is an initial time inℜ. The timer triple, therefore, can be viewed as an initial value problem and
thetimeof our timer is denoted by the state trajectory,xi(t) for t � ti0 that satisfies the following initial value
problem

ẋi = fi(x) (16)

xi(ti0) = xi0 (17)

We letX denote a set of timers of the form given above. The setX characterizes the continuous dynamics of
our hybrid system. If the vector fieldf is unity, then we call the timer aclock. Thestateof the ith timer at
time t will be denoted aszi(t) = (ẋi(t);xi(t)), i.e. it is defined with respect to theith timer’s rate and value.

10

In a hybrid automaton,(N ;X ;L), the labelsL tie the discrete and continuous parts of the system together.
These labels are mappings from the vertices and arcs of the networkN onto formulae in a propositional
logic, P , whose truth values are evaluated with respect to the current timer states,z. The logical propositions
labeling the network nodes and arcs can be defined in a variety of ways. In this paper we choose the following.
We first introduce a set ofatomic equationsdefined over the variables ˙xi , xi , xi0, and fi . Let a andb be real
vectors and letc be a real constant, then the basic atomic equations are:

� switching equationsof the form[ẋi = f j]. This formula states that theith timer’s rate is equal to vector
field f j ,

� guard equationsof the form[a0xiRb0xj] or [a0xiRc]. These inequalties mean that the inner product ofa
andxi , a0xi , stands in relationR (either< or>) to b0xj or real constantc.

� reset equationsof the form[a0xi0 = c] which means thata0xi is equal to real constantc.

Legal formulae inP are defined inductively by the following rules:

� Any atomic equation is inP ,

� If p andq are inP then[p^q] is in P

� if p is in P then p̃ is in P .

The preceding paragraph defined the syntax for formulae inP . The meaningor interpretationof these
formulae is made with respect to the timer statesz= (ẋ;x). In particular, we say that an atomic formula is
satisfied by timer statez(t) = (ẋ(t);x(t)) if and only if the equation is true when evaluated with respect to
those states at timet. The formulap^ q is true if bothp andq are true under the given timer states. The
formula p̃ is true if p is not true under the current timer states. The current timer state is said to satisfy a
formulaep2 P if and only if it has the truth value of true.

The labeling functionL associates each vertex and arc of the network with a proposition inP . The bindings
implied by L determine how the continuous and discrete parts of our hybrid system interact. For hybrid
automata, this interaction is defined according to the following rules:

� The network arcs are labeled with equations inP formed from guard atomic equations,[a0xiRc] or
[a0xiRb0xj]. These conditions on the arcs represent additional enabling conditions for an arc’s firing.
Recall that an arc ((w;v)) of a network may only fire if vertexw is marked. In the hybrid automaton,
this same arc may fire at timet if and only if vertexw is marked andL((w;v)) is true at timet.

� The network vertices are labeled with formulae whose atomic equations are switching or reset equa-
tions. These formulae are interpreted as follows. If the formulae do not evaluate to true when the vertex
is first marked , then the timer states will be reset to make these predicates true. In the case of the reset
equations, this means that the clock time,x is reset to the specified value. For switching equations, the
timer’s rate, ˙x is set to the specified vector field. We therefore see that these reset/switching conditions
allow the hybrid automaton to model autonomous jumping and switching behaviors.

There are several important classes of hybrid automata. When the timers are chosen to be clocks, then
we obtain the class of linear hybrid automata. Timed automata are linear hybrid automata whose guard

11

conditions define rectangles in the continuous state space. The class of rectangular hybrid automata occur
when the timers are represented as rectangular differential inclusions of the form ˙x 2 [a;b] and the guard
conditions also define rectangular sets.

The system whose continuous dynamics are illustrated in figure 1 and whose discrete dynamics are illustrated
in figure 2 can be easily modeled using a hybrid automaton. The resulting hybrid automaton is shown in
figure 3. In this automaton, we see that the vertex labelWorkArea has no predicate associated with it. The
arc, however, betweenWorkArea andGoToBin is labeled with the conditional formula ˜[x > 0]. In other
words when the lock variablex is no longer nonzero this arc may fire and the system will switch to the logical
stateGoToBin.

θ = θ - T1 1

..

x = 1
~[x>0] |θ + θ | < 0.11 B

θ = θ + T1 1

θ = θ 1 1

..

θ = θ 2 2

..
..

x = 0

Go To Bin

Parts Bin

|θ + θ | > 0.1|θ + θ - π/2 | < 0.1

-10 < θ < 100
1

-10 < θ < 100
1

Leave Bin

Work Area

11 BB

θ = θ - T2 2

..

x = 1
~[x>0] |θ + θ | < 0.12 B

θ = θ + T2 2

θ = θ 1 1

..

θ = θ 2 2

..
..

x = 0

Go To Bin

Parts Bin

-10 < θ < 100
1

-10 < θ < 100
1

|π/2 - θ - θ | < 0.12 B
|π/2 - θ - θ | > 0.12 B

Leave Bin

Work Area

Figure 3: Hybrid Automaton for Robotic System

The discrete stateGoToBin is labeled with the predicate[x = 1]^ [θ̈1 = �θ̇1 + k(θ1 + θb)] This predicate
sets the lock variable to 1 thereby indicating to arm 2 that it is heading towards the parts bin. While in
this state, the system also sets its timer rateθ̈1 to the vector field which begins moving the arm towards
the parts bin. The arc connectingGoToBin to the discrete statePartsBin is labeled with the conditional
predicate[θ̄2

1� 100θ̄2
2] < 0]. This conditional predicate is a indefinite quadratic form representing a conic

sector enclosing the parts bin.

Also note that the transition out of discrete stateGoToBin has a nondeterministic next state in the sense that
we can either transition toPartsBin or Stopped. The condition for transitioning to theStopped state is
[θ1 > 100]_ [θ1 < �10] This is a safety condition which is triggered if the arm moves too far (i.e. hits its
physical stops). In this case, we transition to theStopped state. TheStopped state is a deadlocked state
from which all forward progress in the system ceases. It is labeled by a predicate which turns off the system,
so it is labeled with the predicate[θ̈1 =�θ1]^ [θ̈2 =�θ2] thereby causing both arms to eventually stop their
motion.

Once in the parts bin, the system begins moving the arm out of the bin. Therefore the statePartsBin is
labeled with the predicate[θ̈1 =�θ̇1+k(θ1+θb�π=2)]Once the arm is out of the bin, we allow the system’s
discrete state to transition to the stateLeaveBin. The predicate guarding this transition is[θ̄2

1�100θ̄2] > 0.
Upon leaving the bin, the system resets the lock variable so the other arm can access the parts bin, hence

12

the predicate onLeaveBin is [x = 0]. Finally, the system returns to theWorkArea state if the appropriate
conditions on the angle are satisfied or exits to theStopped state if the limit conditions on the arm’s angular
position are violated.

Note that the preceding discussion stepped through the different discrete states of the automaton controlling
the first arm of the vehicle. A similar automaton shown in figure 3 is also used to control the second arm of
the vehicle. The coupling between these two discrete structures is through the lock variable,x and the body
angleθb.

5 System Specifications

Control theoretic measures of system performance are frequently taken to be thesizeof some important signal
within the control system’s feedback loop. Signal size is measured using a functional that maps each signal
(function) onto a positive real number. Common measures of signal size include signal energy, power, and
amplitude. In a more abstract setting these measures are referred to as signalnormsand norm-based measures
of system performance represent the starting point for most optimal controller design methods.

In practice, however, a single norm based measure of performance is rarely adequate to completely char-
acterize what the designer wants the system to do. It may, for example, be necessary to condition system
performance on the system’s reference signal. A gain scheduled system may need to satisfy one norm bound
specification at one of its setpoints and yet this specification may be relaxed at another setpoint without hurt-
ing the system’s ability to satisfactorily meet specified performance goals. Finally, it should be noted that
norm based performance measures are clearly inappropriate for supervised systems such as the system in fig-
ure 1. In this case, the mutual exclusion requirement is a high level behavioral constraint which is not easily
expressed in terms of a signal with bounded norm. The conclusion that must be drawn from the preceding
observations is that while traditional control theoretic performance measures are valuable, they do not pro-
vide sufficient flexibility to characterize the wide range of desired behaviors our systems need to satisfy. To
meet these more complex and realistic system specifications it is imperative that a more expressive method
be adopted for capturing the designer’s requirements.

Formal logics can be used to express more complex system specifications. We’ve already used a propositon
logic to characterize the labels for a hybrid automaton. We now turn to the use of formal logics, and in
particular temporal logic, to express requirements on desired system behavior.

A logic may be characterized by three things, its atomic formulae, its syntax and its semantics. The atomic
formulae are a set of elementary formulae or equations. The syntax of the logic is the set of rules defining
how atomic formulae may be combined to form legal formulae or predicates in the logic. The semantics
characterize the meaning of the logical predicates with respect to a specifiedframe. The frame is a set of
states through which a system might evolve (i.e. our hybrid automaton). The meaning of logical formulae
is then determined by defining the truth values of all logical equations with respect to the frame states. In
particular, if a logical formula,p, is true with respect to the frame states, then we say thats satisfiesp and
we denote this ass j=F p whereF is the frame on whichs is defined. In cases where the frame is clear, we
will drop the subscriptF.

In temporal logics, the frame states can be ordered (i.e. with respect to order of occurrence) and this allows
us to introduce and reason about several notions of time. A linear temporal logic assumes all states are
strictly ordered and hence allows us to reason about purely deterministic strings of events. A branching

13

temporal logic assumes all frame states are partially ordered and allows us to reason about systems with
nondeterministic dynamics. In our case, we will look at system specifications that can be expressed as
formulae in a branching temporal logic since hybrid systems are usually nondeterministic. We refer to this
logic as CTL1. It is a subset of the well-known computation tree logic (CTL).

Before defining the atomic propositions, syntax and semantics of our specification logic, we need to introduce
some preliminary notation. Consider the hybrid automaton,H = (N ;X ;L). The hybrid state of the system
at timet is denoted asσ(t) = (x(t);µ(t)) wherex(t) is the continuous-valued state trajectory andµ(t) is the
network marking history (as a function of time). We define theevent projectionπe(σ(t)) by the equation

πe(σ(t)) = µ(t1);µ(t2); � � � ;µ(tn); � � � (18)

In other words, the event projection ofσ(t) is a sequence of discrete network states in which no two adjacent
states are the same. The event projectionπe(σ) is sometimes called thetraceof the hybrid trajectory.

Let σ(t) be a hybrid system trajectory, then theatomic formulae for our specification logic take the form,
[a0x(t)> b] or [µ(t)=µ0]. The first atomic formula is the conditional formula used earlier as a guard condition
in the hybrid automaton. The current hybrid stateσ is said to satisfy this atomic formula if the inequality is
true for the given state at timet. The second atomic formula is a specific marking of the network. In this
case, the hybrid state at timet satisfies the predicate if and only if the network’s trace at timet equalsµ.

Thesyntaxof a logic is a set of fundamental legal formulas. These fundamental formulas provide a way of
inductively defining all legal formulas in CTL1. In our case, the syntax is as follows.

� p is in CTL1 if p is atomic

� if p is in CTL1 thenp̃ is in CTL1

� if p andq are in CTL1 thenp^q is in CTL1.

� if p andq are in CTL1 thenp9Uq is in CTL1,

� if p andq are in CTL1 thenp8Uq is in CTL1

The formula8U p and9U p are equivalent to[true]8U p and[true]9U p, respectively. The notation above may
seem confusing, but essentially, we are assuming that all legal formulas in CTL1 can be expressed as either a
predicate,p, a predicate with a unary operator, (i.e. ˜p, 8U p, 9U p) or a binary operation on legal predicates,
(i.e. p^q, p8Uq, p9Uq). Note that8U and9U represent binary or unary operators on predicates. These
formulas provide a way of building up more complex formulas. Therefore the formulap_ [q8Ur] is legal
becausep and[q8Ur] are both legal predicates according to the syntactical rules given above.

The preceding syntactical formulas represent a set of abstract formulas but provide no interpretation or mean-
ing to these formulas. The interpretation of the formulas is determined by the logic’s semantics. Theseman-
tics of CTL1 are defined with respect to a hybrid state,s. Let σ(t) = (x(t);µ(t)) be a hybrid trajectory
generated by the hybrid automaton,(N ;X ;L). As the frame is given, we drop explicit mention of it in the
formulae. The meaning of the generating CTL1 formulae is as follows:

s j= p , p is satisfied by states (19)

s j= p̃ , p is not satisfied by states (20)

s j= p^q , p andq are satisfied at states (21)

14

s j= p9Uq , there exists a hybrid trajectoryσ(t) such thatσ(0) = sand a timet1 such that (22)

σ(t) j= p_q for t < t1 andσ(t1) j= q. (23)

s j= p8Uq , for all hybrid trajectoriesσ(t) such thatσ(0) = s, there exists a timet1 such that (24)

σ(t) j= p_q for t < t1 andσ(t1) j= q. (25)

We therefore see that the formulap_q represents our usual notion of logical conjunction where as ˜p rep-
resent the logical not operation. The other two formulaep8Uq and p9Uq have a special meaning which
is specific to temporal logics. These operators provide a way of describing temporal relationships between
predicates. The formulap8Uq can be seen as saying thatfor all hybrid trajectories, predicatep is trueuntil
predicateq is true. The formulap9Uq is the other existential formula meaning thatthere existsa trajectory
in which p is trueuntil q is true.

CTL1 allows us to express complex specifications relating the discrete and continuous states of the hybrid
system. It should be noted that we’ve made no attempt in this paper to construct a complete logic. More
powerful temporal logics using the hybrid automaton as a frame will be found in [20] and [21]. CTL1,
as introduced in this paper, is only intended as a pedagogical tool illustrating some of the basic concepts
encountered in using temporal logics to express specifications for hybrid dynamical systems. In the remainder
of this section we present some specific examples illustrating the use of CTL1 in specifying acceptable
behaviors for the robotic system illustrated in figure 1.

In referring to the example in figure 1, the first requirement is that the system must satisfy a mutual exclusion
requirement. A temporal logic specification capturing this desired constraint is,

8U˜˜ [PartsBin1^PartsBin2] (26)

This particular specification equation says that for all possible traces, the computer programs controlling both
arms will not enter their critical sections at the same time. This mutual exclusion requirement, however, is
only on the discrete part of the system and does not necessarily capture the true constraint we’re interested
in. A more realistic constraint on the system would be expressed as follows:

8U˜[[jθ1+θbj< :1]^ [jθ2+θbj< :1]] (27)

This constraint addresses the mutual exclusion constraint on the physical system by specifying that all hybrid
trajectories respect the physical constraints defining entry into the parts bin.

By itself, of course, equation 27 still does not precisely capture our desired behavior. A stronger constraint
would require that the conditions defining mutual exclusion for the discrete and continuous systems coincide.
This later requirement can be captured by the following specifcation on arm 1’s angular position,

8U[[jθ1+θbj< :1]^ [PartsBin1]] (28)

and by a similar specification on arm 2. This specification requires that the arm is in the parts bin if and only
if the desired angle conditions are satisfied. In this case, the state conditions ensuring the first condition is
satisfied become an invariant characterization of the discrete statePartsBin and if we can ensure this along
with the preceding discrete constraint in equation 26, then mutual exclusion is guaranteed in the system in a
very strong sense.

The specification in equation 28 illustrates one important approach to hybrid system analysis and design. The
approach involves abstracting a discrete-event model for the hybrid system in such a way that checking the
behaviour of the discrete event system is sufficient to ensure the safety of the complete system. We sometimes

15

refer to this abstracted model as abisimulationof the original hybrid system. In our example, the high level
logical model for the system will be a bisimulation of the physical plant if we can guarantee that the physical
constraints defining the parts bin are entered if and only if the discrete system state isPartsBin. If this is
the case, then controlling the discrete-event structure will clearly be sufficient to ensure the safe operation of
both the discrete and continuous parts of the hybrid system.

Not all solutions to the mutual exclusion problem are equally desirable. An easy way to guarantee mutual
exclusion is to require that the system deadlocks in a safe state. In other words, if one of the arms stops
moving, then we can always ensure the other arm accesses the parts bin in a mutually exclusive manner. For
this reason, it is also essential to require that the system bedeadlock-free. A system attempting to enforce
a mutual exclusion constraint is weakly deadlock-free if each process in its entry section is guaranteed of
eventually transitioning into its critical section. The weakly deadlock free specification may be expressed by
the CTL1 formula,

[WorkArea]8U[PartsBin] (29)

This says that for all hybrid trajectories which start in theWorkArea, there is some time when the system
ends up in the discrete statePartsBin.

As noted before, the specification in equation 29 is a requirement for weak deadlock freedom. The require-
ment is weak because no finite constraints have been imposed on the amount of time before deadlock is
broken. A time limit on the duration of deadlock might be imposed by introducing a clock into the system
that measures how long the arm has been deadlocked. Letx1 denote the state of such a clock and let’s assume
the clock is reset and restarted when the system first marks the vertexWorkArea. In this case, the following
equation provides a useful characterization of the deadlock-freedom requirement,

[WorkArea]8U[[PartsBin]^ [x1 < c]] (30)

The specification is requiring that all trajectories starting inWorkArea enterPartsBin in less thatc time
units.

The preceding examples illustrate how various hybrid specifications might be expressed as formulae of a
computational tree logic. This logical framework is clearly more expressive than the traditional norm bounded
approach to specifying control system performance. The particular logic used here, however, is extremely
simple and it should be noted that there is still considerable work being done to investigate specification
logics for hybrid systems. Recent work in [20] and [21] have augmented CTL to reason about time intervals
and there is aduration calculus[24] [25] [26] [27] which also appears to form a very attractive specification
language for hybrid systems. This paper has only presented some of the basic principles and ideas behind
using logics to formally specify hybrid system behaviour.

6 Verification, Validation, and Synthesis

Given a system model and a specification on that model there are two classes of problems to consider; the
analysisandsynthesisproblems. The analysis problems asks whether or not the model satisfies the specifi-
cation. Solving this problem involves identifyingsufficientor necessary and sufficienttests for satisfiability
of the specification with respect to the assumed model (a hybrid automaton). Necessary and sufficient tests
are often referred to asverificationtests whereas only sufficient conditions are often referred to asvalidation
tests. Verification methods have been studied extensively by computer scientists interested in extending sym-
bolic model checking to real-time systems. Validation methods are frequently used in the control systems

16

community where it is frequently impractical from a computational standpoint to verify system properties
such as stability and robust performance. In both cases, we’re concerned with determining whether there
exists a set of initial conditions from which there emanate trajectories satisfying the formal specification.

The second problem of interest concerns the synthesis of controllers that enforce a specification on the plant
behavior. Synthesis is closely related to analysis in that by parametrizing the verification or validation prob-
lems, it may be possible to effectively search for system parameters ensuring the satisfiability of the speci-
fication. Control theorists are very familiar with this approach to system synthesis. Modern robust control
synthesis involves searching over a parameterization of the feedback control loop to find stabilizing systems
satisfying norm bounds on a specified set of objective signals. In [29] a similar approach has been proposed
for using existing verification tools to help synthesize hybrid system controllers.

The objective of this section is to provide an overview of concepts and methods used in hybrid system anal-
ysis and synthesis. The discussion begins with a look at current verification methods based on extensions of
symbolic model checking. We then consider Lyapunov theory approaches for validating hybrid system per-
formance. The two approaches are compared and their relevance to hybrid system synthesis is then discussed.

6.1 Verification

Much of the early work in hybrid systems analysis will be found in the computer science literature. This
body of work assumes that the specification is posed in a temporal logic such the timed computation tree
logic (TCTL), the timeµ-calculus [20] or the duration calculus [25]. The frame for these logics is often
taken to be the hybrid automaton, though there have been recent effort looking at alternative frames such as
Petri nets. By far the best known work has been done for hybrid automata with specification logics based
on Emerson’s computation tree logic [34]. This work [23][22] [21][20] [1] [3] attempts to extend symbolic
model checking to real-time systems.

Symbolic model checking (SMC) [28] is a verification method in which the frame is a finite state machine and
the specification language is the branching temporal logic, CTL. Through the use of binary decision diagrams
(BDD) it has been possible to answer queries posed in CTL in a computationally efficient manner [28]. As a
result symbolic model checking has become a standard way of checking digital VLSI circuits [35].

Early verification work for hybrid systems attempted to duplicate the success of SMC on real time systems.
This work developed an extension of CTL so that specifications could be formulated on continuous state
variables as well as discrete network states. A hybrid system verification method based on earlier SMC
approaches was reported in [1] and software implementing the approach was also developed [3].

How does model checking for hybrid systems work? It is easiest to begin by considering classical SMC for fi-
nite state machines and then examine the extensions required for checking hybrid systems. Traditional model
checking [28] assumes that the specifcation is framed in CTL. The interesting thing about CTL formulae is
that they are fixed points of special recursive operators and this means, therefore, that the satisfiability of such
formulae can be readily computed by the repeated application of these operators [33]. A full discussion of
symbolic model checking is beyond the scope of this paper, but a simple example will serve to illustrate the
basic principle.

Let’s consider the finite state machine shown in figure 3 and the CTL predicate,

p= 9U[PartsBin] (31)

17

This CTL specification asks us to identify all discrete states from which there exists a state trajectory eventu-
ally ending up in the parts bin,PartsBin.

Ω = Pre{Ω } = {v , v , v , v }
23 2 1 3 4

v
1

2v

3
v

v
4

v5

Ω = {v}
0 1

Ω = Pre{Ω } = {v , v }21 1 1

v
1

2v

3
v

v
4

v5

Ω = Pre{Ω } = {v , v , v }22 1 1 3

v
1

2v

3
v

v
4

v5

v
1

2v

3
v

v
4

v5

Figure 4: Model Checking Iteration

Now consider a sequence of sets,Ωi , for i = 0;1;2; : : :. The first setΩ0 consists of all those discrete states
for which the predicatep in the CTL formula9U p is true. In this case, we see thatΩ0 = fPartsBing. The
next setΩ1 is generated by the relation

Ω1 = Ω0[∆ (32)

where the set∆ consists of the preset of all vertices inΩ0. These presets represent those discrete states from
which there exists at least one trajectory reachingΩ0. In this case, therefore, we see that

Ω1 = fGoToBin;PartsBing (33)

We repeat the above iteration repeatedly, computing in theith iteration, the set of discrete states that may
reachΩi�1 in a single step. The first observation that can be made about this iteration is that it is monotonic,
sinceΩi � Ωi+1. The second observation is that because the state machine has a finite number of vertices,
we are guaranteed that there exists somej such thatΩ j = Ωk for all k� j. In other words, the iteration has
afixed point, which we denote asΩ. This fixed point represents all the discrete states of the system satisfyng
the CTL formula9U p. Moreover, this fixed point can be identified after a finite number of iterations, so the
fixed point is computable. In this example, the fixed point is the set

Ω = fPartsBin;WorkArea;GoToBin;LeaveBing (34)

Figure 4 illustrates the basic steps in this iteration leading to the final determination of the fixed point. This
figure shows each set of states in the sequenceΩi . This set represents the set of discrete states which can
reach a discrete state satisfying the predicatep in CTL formula9U p. We therefore see that the iterative
procedures used in symbolic model checking are essentially solving reachability problems over the discrete
event system’s state space. The specification9U p is then verified by comparing this fixed point against
the initial starting states for our system. If the starting states are contained within this fixed point, then the
specification can be considered to be verified.

Extending SMC methods to hybrid systems involves solving the reachability problem for both continuous
and discrete system states. As before, let’s consider the verification of the CTL formula9U p wherep =
[PartsBin]. The SMC method described earlier identifies those discrete states that can reach the parts bin
solely on the basis of the connectivity between logical states in the network. The enabling and firing of arcs

18

in hybrid automata, however, are also conditioned on the satisfaction of the guard equation labeling the arc in
question. This implies that while connectivity between discrete states is certainly necessary for reachability,
it is by no means sufficient. To fire the arc between the discrete statesGoToBin andPartsBin, we must also
ensure that the continuous statesθ1 andθb satisfy the guard condition,θ2

1�100θ2
2 < 0. Extensions of SMC

methods to hybrid systems must therefore determine methods for computing subsets of continuous-states that
allow the firing of the arc.

These subsets can be computed using a recursive procedure similar to that used in traditional SMC methods.
Let’s consider a sequence of pairs of sets,(Ω0;Ξ0);(Ω1;Ξ1); � � � ;(Ωn;Ξn); � � �. The subsequencefΩig consists
of sets of discrete states and the subsequencefΞig consists of subsets of continuous states. We now introduce
a recursive procedure for computing a sequence of sets that can verify the existential formula,9U p. Let Ω0

consist (as before) of all states that satisfy the given predicatep. Let Ξ0 consist be a subset of the continuous
state space that satisfies the guard condition on the arcs leading into the states inΩ0. We determine the next
discrete setΩ1, as before, by adding vertices from the preset ofΩ0. The next setΞ1, is computed as follows.
Let’s consider all arcs between elements ofΩ0 andΩ1. The dynamics of the continuous part of the system
are determined by theswitching equationslabeling the vertices ofΩ1. We therefore propagate back fromΞ0

using these continuous-dynamics until the guard conditions on the arcs leading into the vertices ofΩ1 are
satisfied. The resulting setΞ1, then represents a subset of the continuous state space from which the hybrid
automaton can reachΞ0 under the appropriately selected dynamics.

Figure 5 illustrates how this computation might appear for the specific example considered here. In this case,
Ξ0, is the set outlined at timet = t f . By propgating back until the states enter the work area, we obtain
a polytopic region representing the possible states (and times) which can reachΞ0. This set becomesΞ1.
This operation is sometimes called theprecursoroperation and the setΞ1 is often written asΞ1 = Pre(Ξ0).
Recursive application of this precusor operator constructs a sequence of discrete statesΩi and continuous
subsetsΞi , which represent the states (both discrete and continuous) that can reach those states satisfying the
CTL formula’s predicate,p. If the iteration converges to a fixed point(Ω;Ξ), then this fixed point represents
all of the states that can satisfy the specification,9U p. As in the case of SMC verification, we then compare
the allowed initial states against this fixed point (if it exists). If the starting states are a proper subset of the
fixed point, then we know that this system will satisfy the specification. In other words, we’veverifiedthe
specification for this particular system and set of starting states.

x=1 x=-1
. .

|x| < .1

|x-1| < 0.1

.

Ξ 0

Ξ = Pre(Ξ)1 0

Ξ = Pre(Ξ)2 1

tf

time

x

1

0 |x| < .1

|x-1| < 0.1

x=1
..

x=-1
.

Figure 5: Preset of a Transition

19

The preceding discussion provides a simplified example of the basic concepts behind symbolic model check-
ing for hybrid systems. As can be seen, this is a direct extension of traditional model checking methods. Un-
like traditional model checking however, there is no guarantee that the sequence of continuous state subsets
Ξi will ever converge to a fixed point after a finite number of steps. This last point concerning the non-finite
nature of the computation highlights one of the great weaknesses of model checking methods as applied to
hybrid systems. Since the computation may not terminate in a finite number of steps, the computation of
these reachable sets is not decidable [88].

The decidability of the verification problem for hybrid systems has been an important issue driving a great
deal of current work. In general, verification problems for hybrid automata are undecidable. It has been
shown that even for the very restricted class of linear hybrid automata that verification is undecidable [30].
Suitable restrictions of linear hybrid automata, however, have yielded decidable verification problems. Timed
automata and rectangular hybrid automata represent two such classes of decidable hybrid systems [31]. The
primary obstacle in establishing decidability of hybrid systems rests with the fact that the precursor operation
for determiningΞ may not converge. In particular, it was implied in [31] that the decidability boundary for
hybrid systems may well rest with rectangular hybrid automata and therefore it was important to see how
useful that class of systems would prove to be. In [36], it was suggested that the flow-box theorem could be
used to straighten out hybrid systems represented by nonlinear differential inclusions into rectangular hybrid
automata. The necessary conditions for this transformation, however, were so restrictive that it was apparent
that rectangular hybrid automata were of limited utility in modeling many hybrid systems arising in practice.
Very recently a larger class of decidable systems hybrid systems has been identified. These systems are
referred to aso-minimalsystems [81]. The significance of this larger class of decidable hybrid systems is still
being investigated.

6.2 Validation

In view of the undecidability of verification problems for many hybrid systems, it is natural to ask whether or
not we should relax our demands and settle forvalidation tests. Recall that validation only requires finding
sufficient conditions for a specification’s satisfiability. The hope, of course, is that the sufficient condition is
easier to compute yet is sufficiently tight to be useful. The use of sufficient conditions in control theory has
a long history. A number of fundamental control problems can be shown to be undecidable, but this fact has
not prevented people from developing sufficient methods which are still of great utility.

An example of a very useful sufficient test will be found in Lyapunov’s second method. Lyapunov’s second
method provides a sufficient test for system stability and it serves as the basis for a number of analysis and
synthesis methods in control theory. Given a dynamical system ˙x= f (x) with state trajectoriesx(t), we say
that x0 is anequilibrium point if and only if f (x0) = 0. We say that the equilibrium point is stable in the
sense of Lyapunov if for allε > 0 there is aδ > 0 such thatkx(0)k < δ implies kx(t)k < ε for all t � 0.
Lyapunov’s method states that if there exists a positive definite functionalV : ℜn ! ℜ such thatV(x0) = 0
andV̇(x(t)) < 0 , then the equilibrium point is Lyapunov stable. Lyapunov methods are well known to only
provide sufficient tests for system stability (though converse results exist for linear systems). In spite of this
shortcoming, however, Lyapunov methods still provide an extremely useful tool in the study of nonlinear
dynamical systems.

Given the importance of Lypuanov methods, it is not surprising to find a variety of results on the Lyapunov
stability of hybrid systems. In [37] a single Lyapunov function was used to determine sufficient tests for
switched system (equations 3-4) stability. Multiple Lyapunov function approaches in [38] [40] [42] and

20

[41] greatly extended the applicability of Lyapunov analyses for hybrid systems. We now review some
of this recent work on multiple Lyapunov functions. In [38] , a sufficient condition for switched system
stability using multiple Lyapunov-like functionals was established. Recall that a switched system consists of
a collection of continuous systems ˙x = fi(x) which are switched between on the basis of some supervisory
control logic. Assuming that system switching is non-Zeno in character, then for thejth subsystem, we can
identify a collection of closed bounded intervals, over which that system is active. Figure 6 illustrates one
such hybrid system trajectory and identifies the set of disjoint time intervals over which the first subsystem
is active. Assuming there areN systems to switch between, we associate a functionVj (j = 1; : : : ;N) with
the jth subystem. We say that this family of functionals isLyapunov-likeif Vj(x(t)) is decreasing over the
intervals in which thejth subsystem is active. Figure 6 illustrates a set of Lyapunov-like functionals for this
particular system. The result in [38] states that if there exists such a family of Lyapunov-like functions, then
the switched system is stable in the sense of Lyapunov. Note that in this result, it is possible for there to be
discontinuous jumps in the value ofVj(t) between different subsystems.

The fundamental concept in results such as [41] and [38] is that we only have to consider the behavior of the
Lyapunov function overcyclesin the switching behaviour. Examining figure 6, we see that a Lypaunov-like
function is associated with each subsystem. Each subsystem, however, as shown in the attached automaton
is also associated with a vertex. The decreasing nature of a specific Lyapunov-like function, sayV1, is only
evaluated when the hybrid system is in system 1 or rather vertexv1. Therefore the contours of the Lyapunov-
like function represent subsets of continuous states which the system returns to whenever the discrete part of
the system executes a cycle returning to vertexv1. This close relationship between the cycles of the discrete-
event part of the hybrid system and the Lyapunov-like functions used in the stability analysis represent a
fundamental way in which the continuous and discrete dynamics of the hybrid system are coupled together.

S
ys

te
m

 2

S
ys

te
m

 1

S
ys

te
m

 1

S
ys

te
m

 2

time

V (t)j
V (t)1

V (t)2

V (t)2

V (t)2

V (t)1

System 1 System 2V (t)2

V (t)1

Figure 6: Switched Lyapunov System

The results in [38] provide an important extension of Lyapunov analysis methods for the validation of
switched system stability. Related work in [41] [42] has relaxed some of the assumptions in [38] thereby
providing tighter sufficient conditions on hybrid system stability. Neither of these results is constructive. As
is usually the case in using Lyapunov methods, the determination of such functions can only be done system-

21

atically for special classes of systems. One such class occurs when the switched subsystems are linear time
invariant and the switching sets are conic sectors. In [44] and [43], it was shown that Lyapunov like functions
could be determined by checking the feasibility of a certain linear matrix inequality (LMI) [39] based on a
modified version of Lyapunov’s equation.

While these prior results have provided great insight into the Lyapunov stability of switched systems, these
results do not address the role of the switching law on overall system stability. It was assumed that all
traces generated by the switching law were available to be tested. It is more practical to use the discrete
event system’s switching logic to directly assess system stability. A hint on how this objective might be
accomplished is buried in the result of [38] and [41]. In both results, it was observed that it is important to
check for monotone decreasing behaviour of Lyapunov-like functions overcycleswithin the discrete trace.
Thecyclesare cycles of switched systems that begin and end with the same subsystem. For switching logics
generated by finite automata or Petri nets, the pumping lemma [88] assures us that all traces can be finitely
generated by a finite set of discrete event cycles. It therefore seems plausible that by investigating the cycles
within the discrete part of the hybrid system, it should be possible to formally establish the role that discrete
dynamics play in determining overall hybrid system stability. This ideas was developed more fully in [45]
and [46], where it was shown that the use of fundamental cycles extracted from the discrete event subsystem
could be used in conjunction with the results of [44] and [43] to provide sufficient conditions for hybrid
system stability.

It is interesting to note that the use of fundamental cycles and Lyapunov functionals in [45] is related to
earlier work studying cyclic behaviors in hybrid automata. Recall that the SMC iteration discussed earlier
may converge to a fixed point consisting of a set of discrete statesΩ and a subset of the continuous-state
spaceΞ. Because these points are fixed points of the iteration, they also constitute sets of states which can
be revisited repeatedly by the system. Such sets are sometimes calledviability kernels[47]. The fixed points
Ξ represent viable sets of states associated with cycles in the discrete-event dynamics of the hybrid system.
This is precisely what the Lyapunov analysis discussed above approximates for the fundamental cycles of the
switching logic. The computational methods discussed in [45] identify fundamental cycles of the switching
logic and then uses linear matrix inequality (LMI) techniques to find Lyapunov like functions. The level sets
of these functions are invariant under the cycle and hence represent a viability kernel for the entire system.
These sets, of course, represent approximations to the viability sets,Ξ which the fixed point computation in
the SMC iteration attempts to determine.

This section has surveyed recent work providing sufficient conditions for the stability of switched systems.
The multiple Lyapunov function methods discussed here were related to earlier work in model checking for
hybrid systems and it was noted that these Lyapunov methods can be seen as computing approximations
to the fixed points determined by model checking methods. In the following subsection a concrete example
illustrating the use of Lyapunov type methods in hybrid system validation is presented for the robotic example
of figure 1.

6.3 Validating the Example

This subsection illustrates some of the principles discussed in subsection 6.2. In particular, this subsection
will validate the mutual exclusion and deadlock-freedom requirements on the robotic system of figure 1. The
methodology will be a variation on the Lyapunov stability approaches discussed in [46].

The performance specifications for our example will be posed as temporal logic formulae. The mutual ex-
clusion constraint was that both arms should not be in the parts bin at the same time. This requirement is

22

expressed by the formula,
˜9U[[jθ̄1j< 10Æ]^ [jθ̄2j< 10Æ]] (35)

whereθ̄i = θi +θb (i = 1;2). This formula states that there should not exist any trajectory which eventually
reaches a state where the angular position of both arms is less than the prespecified limit of 0:1. These limits,
of course, define the extent of the parts bin, so the formula is requiring that the physical system should never
violate the mutual exclusion requirement.

The deadlock freedom requirement was that neither arm should reach a state from which it is impossible to
proceed (actually we’re only insisting that the system be weakly deadlock free). Deadlock effectively occurs
if either arm reaches its physical stops at any time. This specification may therefore be represented by the
following formula,

8U[[�10< θ1 < 100]^ [�100< θ2 < 10]] (36)

This formula states that for all trajectories starting in the initial states that both of the conditions[�10< θ1 <
100] and[�100< θ2 < 10] must be satisfied by all state trajectories.

The preceding requirements are associated with regions in the continuous state space of the system. The
mutual exclusion requirement defines aforbidden setwhich the system trajectories must never enter. This
forbidden set is the smaller box centered at the origin in figure 7. The deadlock freedom requirement is
associated with the larger box in figure 7. This box represents the set ofsafearm positions and therefore
represents ansafe setwhich all continuous-state trajectories must remain in for all time.

θ 1

θ 2

switching region
about Workarea

switching area
about PartsBin

viability set
for this system

mutual exclusion
constraint area

deadlock-freedom
constraint area

Figure 7: Forbidden and Safe Sets Associated with System Specifications

23

An ellipsoidal approximation to the validating set of initial conditions may be computed using the Lyapunov
techniques discussed in section 6.2. We use a variation [45] on the linear matrix inequality (LMI) method first
proposed in [44] and [43]. The methodology in [44] [43] formulated a linear matrix inequality whose feasible
solutions were a set of positive definite matricesPj characterizing a family of Lyapunov like functions for
this switched system. The method used in [45] employed a linear matrix inequality to form a sufficient test
for the uniform ultimate boundedness (UUB) [89] of the switched system. This method extends the earlier
results of [44] and [43] so that systems with bounded exogenous disturbances could be treated using the
same type of analysis. The analysis method works as follows. Consider all fundamental cycles of discrete
events generated by the discrete part of the hybrid system. A linear matrix inequality (LMI) may be derived
from this set of cycles whose feasible solution (if it exists) consists of a set of positive definite matrices and
constants characterizing ellipsoidal sets in the continuous-state space whose intersection is invariant under all
possible concatenations of fundamental cycles. In other words, the sets identified by this method represent
sets of continuous states which the system is guaranteed to reenter as it traverses its discrete events. Technical
details on the formulation of the LMI will be found in [56].

The invariant sets identified using the preceding method can be used to validate the mutual exclusion and
deadlock freedom constraints posed above. Let’s first consider the deadlock freedom constraint. Associated
with this requirement was a region in the system’s state space which was required to be invariant under all
possible system trajectories. The validation problem involves finding a set of initial conditions within this
box whose future trajectories remain in the set. The invariant set identified using the preceding method is an
obvious candidate for this set. Therefore, if we can find a set of feasible LMI’s whose solution identify an
invariant set which is properly contained in thesafe setof the system, then the system is guaranteed to be
safe as long as our initial condition is taken from within this invariant set of states. The proper inclusion of
the invariant in the safe set therefore validates the existential specification we posed earlier.

Validating the mutual exclusion requirement may also be accomplished using this method. In this case,
however, we reverse the sense of the inequalities, so that their feasible solution identifies a set which is
guaranteed to berepellingunder all concatenations of fundamental cycles. The union of the ellipsoidal sets
identified by the feasible solutions of this LMI, this represents a repelling set of initial conditions, in the sense
that if the system starts outside this set, then it is guaranteed to remain outside of this set for all time. We use
this repelling setmanner to validate the mutual exclusion requirement. If theforbidden setassociated with
the specification is properly contained within the repelling set, then the specification is validated in the sense
that any initial conditions starting outside of this region will be guaranteed to not violate the mutual exclusion
constraint.

Ensuring that both mutual exclusion and deadlock freedom constraints are met is simply a matter of ensuring
that the intersection of the repelling and invariant sets is non-empty. Figure 7 provides an illustration of the
invariant and repelling sets identified using this LMI method for the case where the feedback gain isk = 1:6
and the ratio of the moments of inertiaJa=Jb = :1. In this case, it is easy to see that the non-empty intersection
of the repelling and invariant sets indeed lies within the accepting region for this problem. For this particular
system, therefore, we can validate the specified behavioral constraints.

6.4 Hybrid System Synthesis

Synthesis methods for hybrid control systems are still at an early stage of development. This subsection
identifies some of the major trends in hybrid control system synthesis.

Early work in hybrid control synthesis attempted to follow the route of traditional sampled data control

24

design. One method proposed extracting a discrete event model of the continuous-part of the hybrid system
and then using discrete-event supervision schemes to synthesize a supervisory controller. [9] The strength
in this approach rested with its attention to the interface between the continuous and discrete subsystems.
Specifically, it was argued that an important aspect of hybrid control synthesis was to design interfaces in
which the extracted DES plantaccuratelymodeled the behavior of the continuous system [12]. Precisely
what constitutes accurate modeling has been discussed in a variety of papers [83] [84] [85] [82]. In most
of these works it is essential that some property of the original continuous system (such as controllability
or observability) is preserved under the discretization. Discrete event systems that satisfy this condition are
sometimes referred to asbisimulationsof the continuous plant. Precisely how such bisimulations might be
used to help in the design and analysis of hybrid control systems, however, remains an open question for the
research community.

An alternative approach todiscretizationis to continualizethe entire system. Research in the dynamics
of switched systems and variable structure systems might be taken as early examples of this continualization
approach. A very sophisticated approach [48] to continualization was based on the use of formal power series
(Lie-Fliess series) [49] to represent the continuous-state trajectories generated by the hybrid systems. The
synthesis problem, then involves determining a controller such that the series representation of the continuous
state trajectory satisfies specified safety conditions. The resulting series representations of the controlled
systems, by way of the Schutzenberger [50] representation theorems, could then be used to extract finite
automata generating the desired switching logic for the hybrid system. This continualized approach was
first discussed in [48] [80] and that work combines concepts from logic, automata theory, and differential
geometry to attempt to produce a unified framework for the synthesis of controlled hybrid systems. The
method is very similar the motion planning approaches found in robotics [54] and an elementary example
illustrating how such switching policies might be synthesized will be found in [55].

Another approach for hybrid control system synthesis is based ongain-schedulingideas [55]. Gain schedul-
ing [51] [52] [53] assumes a set of linear controllers that are switched between as the system moves through
its operating range. Gain scheduling has been extensively studied in the control systems community. Early
work in this area [57], which was of direct interest to the study of hybrid systems, established conditions un-
der which switched behavior would result in stable behavior. The method’s primary strength is that it draws
heavily upon mature results in modern linear robust control and therefore provides a mechanism by which
to actually design controllers that achieve tight norm bounded performance measures [56]. The weakness of
this approach, unfortunately, is that it pays relatively little attention to the switching logic and how that logic
might be used to enhance system stability and performance.

The preceding approaches to controller synthesis reduced the hybrid synthesis problem to a well understood
set of continuous or discrete system synthesis problems. In contrast to these efforts, there has been some work
attempting to define an integrated framework which directly addresses synthesis issues for both continuous
and discrete parts of the system. In this case, the optimal controller is viewed as a saddle point in a non-
cooperative game played between the supervisor and the controller [86] [87]. The nondeterministic nature
of the supervisor means that continuous-state controllers must be optimized over the worst case decisions
adopted by the supervisor and we need, at the same time, to ensure that the supervisor is as permissive as
possible. Both of these objectives are usually conflicting and this conflict leads to the non-cooperative nature
of the game. This viewpoint of hybrid controller synthesis is very elegant from a theoretical standpoint, but
computing the saddle-point is non-trivial. Applications [71] where this method have been applied have relied
on computationally intensive approaches for determining the saddle point. For this approach to succeed, a
computationally efficient method [72] of determining saddle points will need to be found.

25

7 Future Directions

The paper provided an introduction to many of the concepts and trends in hybrid system science. As can be
seen from the paper, hybrid system science it an interdisciplinary field requiring a familiarity with methods
and concepts from computer science and traditional system science. Due to the introductory nature of this
paper, it was impossible to itemize all of the important work being performed. Much of the work outlined
here will be found in a series of workshop proceedings published by Springer-Verlag, [63] [64] [65] [66] [67]
[68] [69] as well as numerous other workshops not mentioned here and various special issues of technical
journals (Theoretical Computer Science, IEEE Transactions on Automatic Control, Discrete Event Dynamic
Systems, International Journal of Control, System and Control Letters, Automatica). The field is still in an
early stage of development, but already some important results and discoveries have been made. Principle
milestones in hybrid system science include the early work on verification using hybrid automata, extension
of Lyapunov methods to hybrid systems, and the growing body of recent work dealing with hybrid system
synthesis. There have recently been significant applications of these methods in traffic control, automotive
systems, and chemical process control [71] [75] [76] [77] [32] [78] [79]. All of these accomplishments point
to a science which shows excellent potential for having a profound impact on the way in which we design
and develop the engineering applications of the future.

References

[1] R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Po, Hybrid automata: an algorithmic approach
to the specification and verification of hybrid systems. in Robert L. Grossman, Anil Nerode, Anders
P. Ravn, and Hans Rischel, editors,Hybrid Systems, Lecture Notes in Computer Science, vol. 736,
Springer-Verlag, pp. 209-229, 1993.

[2] R. Alur and D. Dill, The theory of timed automata,Theoretical Computer Science,vol. 126,pp. 193-235,
1994.

[3] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi, A user’s guide to HyTech. inFirst Workshop on Tools and
Algorithms for the Construction and Analysis of Systems: TACAS94, lecture notes in computer science
vol. 1019, Springer-Verlag, pp. 41-71, 1995.

[4] M.S. Branicky,Studies in Hybrid Systems: modeling, analysis, and control, LIDS-TH-2304, Ph.D.
Dissertation, Massachusets Institute of Technology, LIDS, 1995.

[5] A.J. Van der Schaft and J.M. Schumacher, Complementary Modeling of Hybrid Systems,IEEE Trans.
on Automatic Control, 43(4):483-490, 1998.

[6] R.W. Brockett, Hybrid models for motion control systems, inEssays in control: perspectives in the
theory and its applications, pp. 29-53, Birkhauser, Boston, 1993.

[7] J.P. Aubin and A. Cellina,Differential Inclusions, Springer-Verlag, Berlin, 1984.

[8] R.A. DeCarlo, S.H. Zak, and G.P. Matthews, Variable Structure Control of Nonlinear Multivariable
Systems: a tutorial,Proceedings of the IEEE, Vol. 76, No. 3., March 1988.

[9] J.A. Stiver, P.J. Antsaklis, and M.D. Lemmon, A logical DES approach to the design of hybrid control
systems,Mathematical Computer Modeling, Vol. 23(11/12),pp. 55-76, 1996.

26

[10] X. Yang, M.D. Lemmon, and P.J. Antsaklis, On the supremal controllable sublanguage in the discrete
event model of nondeterministic hybrid control systems,IEEE Trans. on Automatic Control, Vol. 40(12)
, pp. 2098-2102, 1996.

[11] J. Raisch, and S.D. O’Young, Discrete approximations and supervisory control of continuous systems.
IEEE Trans. on Automatic Control, 43(4): 569-573, 1998.

[12] J.S. Stiver, P.J. Antsakis, and M.D. Lemmon, An invariant based approach to the design of hybrid
control systems, inProceedings of the IFAC 13th Triennial World Congress, Vol. J, pp. 457-472, San
Franciscio, CA, 1996.

[13] L. Tavernini, Differential automata and their discrete simulators,Nonlinear analysis, theory, methods
and applications, vol. 11(6), 665-683, 1987.

[14] M. Heymann, F. Lin, and G. Meyer, Synthesis and viability of minimally interventive legal controllers
for hybrid systems,Discrete Event Dynamic Systems: theory and applications, Volume 8(2):105-136,
1998.

[15] J. LeBail, H. Alla, and R. David, Hybrid Petri nets, inProceedings 1st Euopean Control Conference,
Grenoble, France, 1991.

[16] I. Demongodin, and N.T. Koussoulas, Differential Petri nets: representing continuous system in a
discrete-event world,IEEE Transactions on Automatic Control, vol 44:3, pp. 573-578, 1998.

[17] J.-M. Flaus, and H. Alla, Structural analysis of hybrid systems modeled by hybrid flow nets, inPro-
ceedings of the European Control Conference 97, Brussels Belgium, 1997.

[18] A. Guia, and E. Usai, High-level hybrid Petri nets; a definition, inProceedings of the IEEE 35th Con-
ference on Decision and Control, Kobe Japan, 1996.

[19] X. Koutsoukos, K.X. He, M.D. Lemmon, and P.J. Antsaklis, Timed Petri nets in hybrid systems: sta-
bility and supervisory control,Journal of discrete event and dynamical systems, Vol 8(2), pp. 137-174,
1998.

[20] R. Alur, C. Courcoubetis, and D. Dill, Model Checking in Dense Real Time,Information and Compu-
tation, Vol. 104, pp. 2-34, 1993.

[21] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, Symbolic model checking for real-time systems,
Information and Computation, Vol. 111, pp. 193-244, 1994.

[22] R. Alur, T.A. Henzinger and P.-H. Ho, Automatic symbolic verification of embedded systems.IEEE
Trans. on Software Engineering, 22: 181-201, 1996.

[23] R. Alur, C. Courcoubetis, Halbwachs, T.A. Henzinger, P-H Ho , X Nicollin, Olivero, J. Sifjakis, and S.
Yovine, The algorithmic analysis of hybrid systems.Theoretical Computer ScienceVol. 138:, pp. 3-34,
1995.

[24] M.R. Hansen, M.R. and C. Zhou, Semantics and completeness of the duration calculus, in editors,Real-
time: theory in practice, De Bakker, Huizing, and de Roever (editors), 1991, Lecture Notes in Computer
Science Vol. 600, pp. 209-225, Springer-Verlag, Berline, 1992.

[25] C. Zhou, Duration calculii: an overview, inProc. Formal Methods in Programming and their applcia-
tion, Bjorner, Broy and Pottosin (editors), Lecture Notes in Computer Science Vol. 735, pages 256-266,
1993.

27

[26] C. Zhou, M.R. Hansen, M.R., and P. Sestoft, Decidability Results for duraiton calculus,Proc. STACS 93,
Enjalbert, Finkel, and Wagner (editors), Lecture Notes in Computer Science 665, pp. 58-68, Springer-
Verlag, 1993.

[27] K.G. Larsen, P. Pettersson, and W. Yi, Model-Checking for Real-Time Systems, inProceedings of the
10th International Conference on Fundamentals of Computation Theory, Dresden, Germany, Lecture
Notes in Computer Science Vol. 965, pages 62-88, Horst Reichel (editor.), Springer-Verlag, 1995.

[28] K. McMillan, Symbolic Model Checking, Kluwer Academic, 1993.

[29] H. Wong-Toi, Synthesis of Contollers for Linear Hybrid Automata,Proceedings of the 36th IEEE Con-
ference on Decision and Control, San Diego, California, 1997.

[30] A. Puri, and P. Varaiya, Decidability of hybrid systems with rectangular differential inclusions., in
Computer Aided Verification: CAV’94, Dill (editor), Lecture Notes in Computer Science Voo. 818.,
Springer-Verlag, pp. 81-84, 1994.

[31] T.A. Henzinger P. Kopke, A. Puri, and P. Varaiya , What’s decidable about hybrid automata,Proc. of
the 27th Annual ACM symposium on the theory of computing, 1995.

[32] S. Kowalewski, M. Fritz, H. Graf, J. Preussig, S. Simon, O. Stursberg,and Treseler., A case study in
tool-aided analysis of discretely controlled continuous systems: the two tanks problem, Hybrid Systems
V, (in print), Springer Verlag, 1999.

[33] E.M. Clarke and E.A. Emerson, Characterizing properties of algorithms as fixed points, in7th interna-
tional colloquium on automata languages and programming, Lecture Notes in Computer Scinece Vol.
85, Springer-Verlag, 1981.

[34] E.M. Clarke and E.A. Emerson, Synthesis of synchronization skeletons for branching time temporal
logic. in Logic of Programs: WorkshopLecture Notes in Computer Science Vol 131, Dexter and Kozen
(editors), Yorktown Heights, New York, Springer-Verlag, 1981.

[35] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and Hwang, Symbolic model checking: 1020 states
and beyond,Proceedings of the 4th annual sympsoium on logic in computer science, June 1990.

[36] G.J. Pappas and S. Sastry, Straightening out rectangular differential inclusions, to appear inSystem and
Control Letters, 1998.

[37] P. Peleties and R.A. DeCarlo, Asymptotic stability ofm-switched systems using lypaunov like functions,
in Proceedings of the American Control Conference, pp. 1679-1684, 1991.

[38] M. Branicky , Stability of switched and hybrid systems. inProceedings of the 33th Conference on
Decision and Control, Lake Buena Vista, Florida, pp. 3498-3503, 1994.

[39] S. BOyd, L.E. Ghaoui, E. Feron, and V. Balakrishnan,Linear matrix inequalities in system and control
theory, SIAM, studies in applied mathematics 15, 1994.

[40] M.S. Branicky, Multiple Lypaunov functions and other analysis tools for switched and hybrid systems,
IEEE Trans. on Automatic Control, 43(4), April 1998.

[41] L. Hou, A.N. Michel,and H. Ye, Stasbility analysis of switched systems, inProceedings of the 35th
Conference on Decision and Control, Kobe Japan, 1996.

28

[42] H. Ye, A.N. Michel, and L. Hou, Stability theory for hybrid dynamical systems,IEEE Trans. on Auto-
matic Control, 43(4):461-474.

[43] M. Johansson and A. Rantzer, Computation of peicewise quadratic Lyapunov functions for hybrid sys-
tems,IEEE Transactions on Automatic Control, 1998.

[44] S. Petterson and B. Lennartson, Stability and robustness of hybrid systems. inProceedings of 35th
Conference on Decision and Control, Kobe Japan, 1996.

[45] K.X. He and M.D. Lemmon, Lyapunov stability of continuous valued systems under the supervision of
discrete event transition systems, inProceedings of Hybrid Systems: Control and Computation, lecture
notes in computer science Vol. 1386, Springer Verlag, 1998.

[46] M.D. Lemmon, and K.X. He , Modeling hybrid control systems using programmable Petri nets,JESA -
European Journal of Automation, to appear in 1999.

[47] A. Deshpande and P. Varaiya, Viable control of hybrid systems, inHybrid systems II[64], pp. 128-147.

[48] A. Nerode and W. Kohn, Multiple Agent hybrid control architecture, hybrid systems, inHybrid Systems
[63], pp297-316

[49] A. Isidori, Nonlinear Control Systems, Springer-Verlag, Berlin, 2nd edition, 1989.

[50] A. Salomaa, M. Soittola,Automata Theoretic Aspects of formal power series, Springer-Verlag, Berlin,
1973.

[51] J.S. Shamma and M. Athans, Analysis of gain shceduled control for nonlinear plants,IEEE Trans. on
Automatic Control, Vol 35, 878-907, 1991.

[52] J.S. Shamma and M. Athans, Guaranteed properties of gain scheduled control for linear parameter-
varying plants,Automatica, Vol. 27, 559, 564, 1990.

[53] A. Packard, Gain scheduling via linear fractional transformation,System and Control Letters, Vol 22,
79-92, 1994.

[54] J.W. Goodwine and J. Burdick, Trajecotry generation for legged robotic systems,IEEE International
Conference on Robotics and Automation, 1997.

[55] M.D. Lemmon, and C.J. Bett, Safe implementations of supervisory commands,International Journal
of Control, Vol 70(2), pp. 271-288, 1998.

[56] C.J. Bett and M.D. Lemmon, Bounded amplitude performance of switched LPV systems with applica-
tions to hybrid systems, to appear inAutomatica, 1999.

[57] A.S. Morse,Control using logic based switching, lecture ntoes in control and information sciences vol.
222, Springer-Verlag, 1997.

[58] L. Lamport, A fast mutual exclusion algorithm,ACM Trans. on Computer Systems, 5(1):1-11, 1987.

[59] Raynal, M.,Algorithms for mutual exclusion, MIT Press, 1986.

[60] R. Gallmeister,POSIX.4, programming for the real world, O’Reilley and Associates, 1995.

[61] P.J. Ramadge and W.M. Wonham, Supervisory control of a class of discrete event processes,SIAM
Journal of Control and Optimization, 25(1): 206-230, 1987.

29

[62] N. Lynch and N. Shavit, Timing-based mutual exclusion,Proceedings 13th IEEE Real-Time Systems
Symposium, IEEE Computer Society Press, Los Alamtibes, CA, pp. 3-11, 1993.

[63] R.L. Grossman, A.N. Nerode , A.P. Ravn , and H. Rischel (editors),Hybrid Systems, lecture notes in
computer science volume 736, Springer-Verlag, 1993.

[64] P.J. Antsakis, W. Kohn, A.N. Nerode, and S. Sastry (editors),Hybrid Systems II, Lecture Notes in
Computer Science, vol 999, Springer Verlag, 1995.

[65] R. Alur , T.A. Henzinger , and E.D. Sontag (editors),Hybrid Systems III; verification and control,
Lecture Notes in Computer Science vol 1066, Springer Verlag. 1996.

[66] P.J. Antsaklis, W. Kohn, A.N. Nerode, and S. Sastry (editors),Hybrid Systems IV, Lecture Notes in
Computer Science vol 1273, Springer-Verlag, 1997.

[67] P.J. Antsaklis, W. Kohn, M.D. Lemmon, A.N. Nerode , S. Sastry (editors)Hybrid Systems V, Lecture
Notes in Computer Science (in press), Springer-Verlag, 1999.

[68] T.A. Henzinger and S. Sastry (editors),Hybrid systems: control and computation, Lecture Notes in
Computer Science 1386, Springer-Verlag, 1998.

[69] O. Maller (editor), Hybrid and Real-Time Systems: Hart’97, Lecture Notes in Computer Science Vol.
1201, Springer Verlag, 1997.

[70] A.S. Matveev and A.V. Savkin, Reduction and decompositionof differential automata: theory and ap-
plications, inHybrid Systems: computation and control[68], 1998.

[71] C. Tomlin, G. Pappas and S. Sastry, Conflict resolution for air traffic managmeent: a study in multiagent
hybrid sytems,IEEE Trans. of Automatic Control, Vol. 43(4), 1998.

[72] J. Lygeros, C.J. Tomlin, and S. Sastry, On controller synthesis for nonlinear hybrid systems,Proceedings
of 37th IEEE Conference on Decision and Control, Tampa, Florida, Dec. 1998.

[73] J. Lygeros, D. Godbole, and S. Sastry, Verified hybrid cotnrollers for automated vehicles,IEEE Trans
of Automatic Control, 43(4), 1998.

[74] H.S. Witsenhausen, A class of hybrid-state continuous time dynamic systems,IEEE Transactions on
Automatic Control, 11(2):161-167, 1966.

[75] B. Lennartson, M. Tittus, B. Egardt, and S. Petterson, Hybrid systems in process control,Control Sys-
tems Magazine, 16(5):45-56, 1996.

[76] M. Tittus, Control Synthesis for Batch Processes, Ph.D. thesis, Control engineering lab, Chalmers Uni-
versity of Technology, Goteburg, Sweden, 1994.

[77] J. Raisch and E. Klein, Approximating automata and discrete control for continuous systems: two
examples from chemical process control,Hybrid Systems V.[67], 1999.

[78] C.W. Seibel and J.-M. Farines, Towards using hybrid automata for the mission planning of unmanned
aerial vehicles. inHybrid Systems V.[67], 1999.

[79] R. Balluchi,M. De Benedetto, C. Pinello, C. Rossi, A. Sangiovanni-Vincentelli, Hybrid control for
automotive engine management: the cut-off case.Hybrid Systems: computation and control[68], 1998.

30

[80] A.N. Nerode and W. Kohn, Models for hybird systems: automata topologies, controlability observabil-
ity, in Hybrid Systems[63], 1993.

[81] G. Lafferriere, G. J. Pappas, and S. Sastry, o-minimal hybrid systems,Technical report UCB/ERL
M98/29, Universityof Califory Berkeley, May 1998.

[82] G.J. Pappas, G. Lafferriere and S. Sastry, Hierarchically consisting control systems inProceedings of
37th IEEE Conference in Decison and Control, Tampa, FL, Dec. 1998.

[83] M.D. Lemmon and P.J. Antaklis, Inductively inferring valid logical models of continuous state dynam-
ical systemsTheoretical computer science, volume 138, 201-210, 1995.

[84] P.E. Caines and Y.J. Wei, The hierarchical lattices of finite state machines,System and Control Letters,
25:257-263, 1994.

[85] P.E. Caines and Y.J. Wei, Hierarchical hybrid control systems: a lattice theoretic formulation.IEEE
Trans. on Automatic Control, 43(4):501-508, April 1998.

[86] J. Lygeros, C. Tomlin, and S. Sastry, Multiobjective hybrid controller synthesis, inProc. Hart’97 [69],
1997.

[87] J. Lygeros, D.N. Godbole, and S. Sastry, Multiagent hybrid system design using game theory and opti-
mal control,Proc. of Conference on Decision and Control, Kobe Japan, 1190-1195, 1996.

[88] J.E. Hopcroft, J.D. Ullman,Introduction to Automata Theory, Languages, and Computation, Addison-
Wesley Publishing Co., Reading Massachusetts, 1979.

[89] H.K. Khalil, Nonlinear Systems, 2nd edition, Prentice-Hall, 1996.

31

